Analysis of climate variability and droughts in East Africa using high-resolution climate data products
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F20%3A00524520" target="_blank" >RIV/86652079:_____/20:00524520 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0921818120300199?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921818120300199?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.gloplacha.2020.103130" target="_blank" >10.1016/j.gloplacha.2020.103130</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of climate variability and droughts in East Africa using high-resolution climate data products
Popis výsledku v původním jazyce
Analysis of climate variability and change as a basis for adaptation and mitigation strategies requires long-term observations. However, the limited availability of ground station data constrains studies focusing on detecting variability and changes in climate and drought monitoring, particularly in developing countries of East Africa. Here, we use high-resolution precipitation (1981-2016) and maximum and minimum temperature (T-max and T-min) (1979-2012) datasets from international databases like the Climate Hazard Group (CHG), representing the most accurate data sources for the region. We assessed seasonal, annual, and decadal variability in rainfall, T-max and T-min and drought conditions using the Standardized Precipitation Index (SPI). The impact of changes in Sea Surface Temperature on rainfall variability and droughts is assessed using the Nino3.4 and Indian Ocean Dipole (IOD) indices. The results show maximum variability in rainfall during October-December (OND, short rainy season) followed by March-May (MAM, long rainy season). Rainfall variability during OND showed a significant correlation with IOD in Ethiopia (69%), Kenya (80%), and Tanzania (63%). In Ethiopia, the period June-September (JJAS) showed a significant negative correlation (-56%) with the Nino3.4. Based on the 12-month SPI, the eastern and western parts of the region are getting drier and wetter, respectively with an average of mild, moderate, and severe droughts of more than 37%, 6%, and 2% of the study period, respectively. The observed severe droughts (e.g., 1999/2000) and extreme floods (e.g., 1997/1998) were found to be linked to respective negative and positive anomalies of the Nino3.4. In general, climate data products with high spatial resolution and accuracy help detect changes and variability in climate at local scale where adaptation is required.
Název v anglickém jazyce
Analysis of climate variability and droughts in East Africa using high-resolution climate data products
Popis výsledku anglicky
Analysis of climate variability and change as a basis for adaptation and mitigation strategies requires long-term observations. However, the limited availability of ground station data constrains studies focusing on detecting variability and changes in climate and drought monitoring, particularly in developing countries of East Africa. Here, we use high-resolution precipitation (1981-2016) and maximum and minimum temperature (T-max and T-min) (1979-2012) datasets from international databases like the Climate Hazard Group (CHG), representing the most accurate data sources for the region. We assessed seasonal, annual, and decadal variability in rainfall, T-max and T-min and drought conditions using the Standardized Precipitation Index (SPI). The impact of changes in Sea Surface Temperature on rainfall variability and droughts is assessed using the Nino3.4 and Indian Ocean Dipole (IOD) indices. The results show maximum variability in rainfall during October-December (OND, short rainy season) followed by March-May (MAM, long rainy season). Rainfall variability during OND showed a significant correlation with IOD in Ethiopia (69%), Kenya (80%), and Tanzania (63%). In Ethiopia, the period June-September (JJAS) showed a significant negative correlation (-56%) with the Nino3.4. Based on the 12-month SPI, the eastern and western parts of the region are getting drier and wetter, respectively with an average of mild, moderate, and severe droughts of more than 37%, 6%, and 2% of the study period, respectively. The observed severe droughts (e.g., 1999/2000) and extreme floods (e.g., 1997/1998) were found to be linked to respective negative and positive anomalies of the Nino3.4. In general, climate data products with high spatial resolution and accuracy help detect changes and variability in climate at local scale where adaptation is required.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Global and Planetary Change
ISSN
0921-8181
e-ISSN
—
Svazek periodika
186
Číslo periodika v rámci svazku
MAR 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
103130
Kód UT WoS článku
000526518600001
EID výsledku v databázi Scopus
2-s2.0-85078201731