Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of climate variability and droughts in East Africa using high-resolution climate data products

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F20%3A00524520" target="_blank" >RIV/86652079:_____/20:00524520 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0921818120300199?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921818120300199?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.gloplacha.2020.103130" target="_blank" >10.1016/j.gloplacha.2020.103130</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of climate variability and droughts in East Africa using high-resolution climate data products

  • Popis výsledku v původním jazyce

    Analysis of climate variability and change as a basis for adaptation and mitigation strategies requires long-term observations. However, the limited availability of ground station data constrains studies focusing on detecting variability and changes in climate and drought monitoring, particularly in developing countries of East Africa. Here, we use high-resolution precipitation (1981-2016) and maximum and minimum temperature (T-max and T-min) (1979-2012) datasets from international databases like the Climate Hazard Group (CHG), representing the most accurate data sources for the region. We assessed seasonal, annual, and decadal variability in rainfall, T-max and T-min and drought conditions using the Standardized Precipitation Index (SPI). The impact of changes in Sea Surface Temperature on rainfall variability and droughts is assessed using the Nino3.4 and Indian Ocean Dipole (IOD) indices. The results show maximum variability in rainfall during October-December (OND, short rainy season) followed by March-May (MAM, long rainy season). Rainfall variability during OND showed a significant correlation with IOD in Ethiopia (69%), Kenya (80%), and Tanzania (63%). In Ethiopia, the period June-September (JJAS) showed a significant negative correlation (-56%) with the Nino3.4. Based on the 12-month SPI, the eastern and western parts of the region are getting drier and wetter, respectively with an average of mild, moderate, and severe droughts of more than 37%, 6%, and 2% of the study period, respectively. The observed severe droughts (e.g., 1999/2000) and extreme floods (e.g., 1997/1998) were found to be linked to respective negative and positive anomalies of the Nino3.4. In general, climate data products with high spatial resolution and accuracy help detect changes and variability in climate at local scale where adaptation is required.

  • Název v anglickém jazyce

    Analysis of climate variability and droughts in East Africa using high-resolution climate data products

  • Popis výsledku anglicky

    Analysis of climate variability and change as a basis for adaptation and mitigation strategies requires long-term observations. However, the limited availability of ground station data constrains studies focusing on detecting variability and changes in climate and drought monitoring, particularly in developing countries of East Africa. Here, we use high-resolution precipitation (1981-2016) and maximum and minimum temperature (T-max and T-min) (1979-2012) datasets from international databases like the Climate Hazard Group (CHG), representing the most accurate data sources for the region. We assessed seasonal, annual, and decadal variability in rainfall, T-max and T-min and drought conditions using the Standardized Precipitation Index (SPI). The impact of changes in Sea Surface Temperature on rainfall variability and droughts is assessed using the Nino3.4 and Indian Ocean Dipole (IOD) indices. The results show maximum variability in rainfall during October-December (OND, short rainy season) followed by March-May (MAM, long rainy season). Rainfall variability during OND showed a significant correlation with IOD in Ethiopia (69%), Kenya (80%), and Tanzania (63%). In Ethiopia, the period June-September (JJAS) showed a significant negative correlation (-56%) with the Nino3.4. Based on the 12-month SPI, the eastern and western parts of the region are getting drier and wetter, respectively with an average of mild, moderate, and severe droughts of more than 37%, 6%, and 2% of the study period, respectively. The observed severe droughts (e.g., 1999/2000) and extreme floods (e.g., 1997/1998) were found to be linked to respective negative and positive anomalies of the Nino3.4. In general, climate data products with high spatial resolution and accuracy help detect changes and variability in climate at local scale where adaptation is required.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Global and Planetary Change

  • ISSN

    0921-8181

  • e-ISSN

  • Svazek periodika

    186

  • Číslo periodika v rámci svazku

    MAR 2020

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    103130

  • Kód UT WoS článku

    000526518600001

  • EID výsledku v databázi Scopus

    2-s2.0-85078201731