Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F20%3A00524575" target="_blank" >RIV/86652079:_____/20:00524575 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00020699:_____/20:N0000030
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00704-019-03018-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs00704-019-03018-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00704-019-03018-0" target="_blank" >10.1007/s00704-019-03018-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset
Popis výsledku v původním jazyce
Homogenization of daily temperature series is a fundamental step for climatological analyses. In the last decades, several methods have been developed, presenting different statistical and procedural approaches. In this study, four homogenization methods (together with two variants) have been tested and compared. This has been performed constructing a benchmark dataset, where segments of homogeneous series are replaced with simultaneous measurements from neighboring homogeneous series. This generates inhomogeneous series (the test set) whose homogeneous version (the benchmark set) is known. Two benchmark datasets are created. The first one is based on series from the Czech Republic and has a high quality, high station density, and a large number of reference series. The second one uses stations from all Europe and presents more challenges, such as missing segments, low station density, and scarcity of reference series. The comparison has been performed with pre-defined metrics which check the statistical distance between the homogenized versions and the benchmark. Almost all homogenization methods perform well on the near-ideal benchmark (maximum relative root mean square error (rRMSE): 1.01), while on the European dataset, the homogenization methods diverge and the rRMSE increases up to 1.87. Analyses of the percentages of non-adjusted inhomogeneous data (up to 39%) and substantial differences in the trends among the homogenized versions helped identifying diverging procedural characteristics of the methods. These results add new elements to the debate about homogenization methods for daily values and motivate the use of realistic and challenging datasets in evaluating their robustness and flexibility.
Název v anglickém jazyce
Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset
Popis výsledku anglicky
Homogenization of daily temperature series is a fundamental step for climatological analyses. In the last decades, several methods have been developed, presenting different statistical and procedural approaches. In this study, four homogenization methods (together with two variants) have been tested and compared. This has been performed constructing a benchmark dataset, where segments of homogeneous series are replaced with simultaneous measurements from neighboring homogeneous series. This generates inhomogeneous series (the test set) whose homogeneous version (the benchmark set) is known. Two benchmark datasets are created. The first one is based on series from the Czech Republic and has a high quality, high station density, and a large number of reference series. The second one uses stations from all Europe and presents more challenges, such as missing segments, low station density, and scarcity of reference series. The comparison has been performed with pre-defined metrics which check the statistical distance between the homogenized versions and the benchmark. Almost all homogenization methods perform well on the near-ideal benchmark (maximum relative root mean square error (rRMSE): 1.01), while on the European dataset, the homogenization methods diverge and the rRMSE increases up to 1.87. Analyses of the percentages of non-adjusted inhomogeneous data (up to 39%) and substantial differences in the trends among the homogenized versions helped identifying diverging procedural characteristics of the methods. These results add new elements to the debate about homogenization methods for daily values and motivate the use of realistic and challenging datasets in evaluating their robustness and flexibility.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical and Applied Climatology
ISSN
0177-798X
e-ISSN
—
Svazek periodika
140
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
17
Strana od-do
285-301
Kód UT WoS článku
000521505600021
EID výsledku v databázi Scopus
2-s2.0-85077594337