Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F20%3A00524575" target="_blank" >RIV/86652079:_____/20:00524575 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00020699:_____/20:N0000030

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007%2Fs00704-019-03018-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs00704-019-03018-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00704-019-03018-0" target="_blank" >10.1007/s00704-019-03018-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset

  • Popis výsledku v původním jazyce

    Homogenization of daily temperature series is a fundamental step for climatological analyses. In the last decades, several methods have been developed, presenting different statistical and procedural approaches. In this study, four homogenization methods (together with two variants) have been tested and compared. This has been performed constructing a benchmark dataset, where segments of homogeneous series are replaced with simultaneous measurements from neighboring homogeneous series. This generates inhomogeneous series (the test set) whose homogeneous version (the benchmark set) is known. Two benchmark datasets are created. The first one is based on series from the Czech Republic and has a high quality, high station density, and a large number of reference series. The second one uses stations from all Europe and presents more challenges, such as missing segments, low station density, and scarcity of reference series. The comparison has been performed with pre-defined metrics which check the statistical distance between the homogenized versions and the benchmark. Almost all homogenization methods perform well on the near-ideal benchmark (maximum relative root mean square error (rRMSE): 1.01), while on the European dataset, the homogenization methods diverge and the rRMSE increases up to 1.87. Analyses of the percentages of non-adjusted inhomogeneous data (up to 39%) and substantial differences in the trends among the homogenized versions helped identifying diverging procedural characteristics of the methods. These results add new elements to the debate about homogenization methods for daily values and motivate the use of realistic and challenging datasets in evaluating their robustness and flexibility.

  • Název v anglickém jazyce

    Comparison of homogenization methods for daily temperature series against an observation-based benchmark dataset

  • Popis výsledku anglicky

    Homogenization of daily temperature series is a fundamental step for climatological analyses. In the last decades, several methods have been developed, presenting different statistical and procedural approaches. In this study, four homogenization methods (together with two variants) have been tested and compared. This has been performed constructing a benchmark dataset, where segments of homogeneous series are replaced with simultaneous measurements from neighboring homogeneous series. This generates inhomogeneous series (the test set) whose homogeneous version (the benchmark set) is known. Two benchmark datasets are created. The first one is based on series from the Czech Republic and has a high quality, high station density, and a large number of reference series. The second one uses stations from all Europe and presents more challenges, such as missing segments, low station density, and scarcity of reference series. The comparison has been performed with pre-defined metrics which check the statistical distance between the homogenized versions and the benchmark. Almost all homogenization methods perform well on the near-ideal benchmark (maximum relative root mean square error (rRMSE): 1.01), while on the European dataset, the homogenization methods diverge and the rRMSE increases up to 1.87. Analyses of the percentages of non-adjusted inhomogeneous data (up to 39%) and substantial differences in the trends among the homogenized versions helped identifying diverging procedural characteristics of the methods. These results add new elements to the debate about homogenization methods for daily values and motivate the use of realistic and challenging datasets in evaluating their robustness and flexibility.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical and Applied Climatology

  • ISSN

    0177-798X

  • e-ISSN

  • Svazek periodika

    140

  • Číslo periodika v rámci svazku

    1-2

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    17

  • Strana od-do

    285-301

  • Kód UT WoS článku

    000521505600021

  • EID výsledku v databázi Scopus

    2-s2.0-85077594337