Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00539220" target="_blank" >RIV/86652079:_____/21:00539220 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43410/21:43918220
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00468-020-02022-6" target="_blank" >https://link.springer.com/article/10.1007/s00468-020-02022-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00468-020-02022-6" target="_blank" >10.1007/s00468-020-02022-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe
Popis výsledku v původním jazyce
Key message Effect of drought during 2017 and 2018 resulted in radial stem increment reduction to 78% and 61%, respectively, of the levels occurring in normal year 2016 in Central Europe. Norway spruce (Picea abies(L.) Karst.) is currently the most threatened commercial tree species in Central Europe. This is due to increased drought stress from advancing climate change as well as the species' distribution outside its natural range. Tree water status and water movement through a tree are key parameters influencing tree growth and vitality. This study is focused on the growth and stress reaction of spruce to climatic conditions, analysing stem diameter variation along an elevation gradient (381-995 m a.s.l.) in the Czech Republic. Tree water deficit based on the zero-growth concept (TWD), calculated from high-frequency dendrometer records and the temporal dynamics of radial growth, was studied for 3 years (2016-2018). Two of these 3 years were affected by severe drought during the growing season. Contrary to our expectations, the observed TWD showed no clear linear decline with rising elevation. The most severe tree desiccation was observed in experimental sites at middle elevations of about 600 m a.s.l. Here, we show that both the timing and level of tree water deficit had an impact on annual stem radial increment (SRIannual). Severe drought had a substantial negative impact on SRI(annual)of Norway spruce in both 2017 and 2018. Drought conditions in 2017 and 2018 resulted in reduction of SRI(annual)relative to measurements for the wetter year in 2016 to 78% and 61%, respectively. We report the evidence that the current climatic conditions in the Central European region are not suitable for growing Norway spruce at lower and middle elevations and that forest management needs to react immediately to this situation.
Název v anglickém jazyce
Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe
Popis výsledku anglicky
Key message Effect of drought during 2017 and 2018 resulted in radial stem increment reduction to 78% and 61%, respectively, of the levels occurring in normal year 2016 in Central Europe. Norway spruce (Picea abies(L.) Karst.) is currently the most threatened commercial tree species in Central Europe. This is due to increased drought stress from advancing climate change as well as the species' distribution outside its natural range. Tree water status and water movement through a tree are key parameters influencing tree growth and vitality. This study is focused on the growth and stress reaction of spruce to climatic conditions, analysing stem diameter variation along an elevation gradient (381-995 m a.s.l.) in the Czech Republic. Tree water deficit based on the zero-growth concept (TWD), calculated from high-frequency dendrometer records and the temporal dynamics of radial growth, was studied for 3 years (2016-2018). Two of these 3 years were affected by severe drought during the growing season. Contrary to our expectations, the observed TWD showed no clear linear decline with rising elevation. The most severe tree desiccation was observed in experimental sites at middle elevations of about 600 m a.s.l. Here, we show that both the timing and level of tree water deficit had an impact on annual stem radial increment (SRIannual). Severe drought had a substantial negative impact on SRI(annual)of Norway spruce in both 2017 and 2018. Drought conditions in 2017 and 2018 resulted in reduction of SRI(annual)relative to measurements for the wetter year in 2016 to 78% and 61%, respectively. We report the evidence that the current climatic conditions in the Central European region are not suitable for growing Norway spruce at lower and middle elevations and that forest management needs to react immediately to this situation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Trees: structure and function
ISSN
0931-1890
e-ISSN
1432-2285
Svazek periodika
35
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
103-119
Kód UT WoS článku
000561482700001
EID výsledku v databázi Scopus
2-s2.0-85089684570