Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved global estimations of gross primary productivity of natural vegetation types by incorporating plant functional type

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00543249" target="_blank" >RIV/86652079:_____/21:00543249 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0303243421000350?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0303243421000350?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jag.2021.102328" target="_blank" >10.1016/j.jag.2021.102328</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved global estimations of gross primary productivity of natural vegetation types by incorporating plant functional type

  • Popis výsledku v původním jazyce

    Satellite-based light use efficiency (LUE) models are important tools for estimating regional and global vegetation gross primary productivity (GPP). However, all LUE models assume a constant value of maximum LUE at canopy scale (LUEmaxcanopy) over a given vegetation type. This assumption is not supported by observed plant traits regulating LUEmaxcanopy, which varies greatly even within the same ecosystem type. In this study, we developed an improved satellite data driven GPP model by identifying the potential maximal GPP (GPPPOT) and their dominant climate control factor in various plant functional types (PFT), which takes into account both plant trait and climatic control inter-dependence. We selected 161 sites from the FLUXNET2015 dataset with eddy covariance CO2 flux data and continuous meteorology to derive GPPPOT and their dominant climate control factor of vegetation growth for 42 natural PFTs. Results showed that (1) under the same phenology and incident photosynthetic active radiation, the maximal variance of GPPPOT is found in different PFTs of forests (10.9 g C m- 2 day-1) and in different climatic zones of grasslands (>10 g C m- 2 day-1), (2) intra-annual change of GPP in tropical and arid climate zones is mostly driven by vapor pressure deficit (VPD) changes, while temperature is the dominant climate control factor in temperate, boreal and polar climate zones, even under the same climate condition, physiological stress in photosynthesis is different across PFTs, (3) the model that takes into account the plant trait difference across PFTs had a higher agreement with flux tower-based GPP data (GPPflux) than the GPP products that omit PFT differences. Such agreement was highest for natural vegetation cover sites (R2 = 0.77, RMSE = 1.79 g C m- 2 day- 1). These results suggest that global scale GPP models should incorporate both plant traits and their dominant climate control factor variance in various PFT to reduce the uncertainties in terrestrial carbon assessments.

  • Název v anglickém jazyce

    Improved global estimations of gross primary productivity of natural vegetation types by incorporating plant functional type

  • Popis výsledku anglicky

    Satellite-based light use efficiency (LUE) models are important tools for estimating regional and global vegetation gross primary productivity (GPP). However, all LUE models assume a constant value of maximum LUE at canopy scale (LUEmaxcanopy) over a given vegetation type. This assumption is not supported by observed plant traits regulating LUEmaxcanopy, which varies greatly even within the same ecosystem type. In this study, we developed an improved satellite data driven GPP model by identifying the potential maximal GPP (GPPPOT) and their dominant climate control factor in various plant functional types (PFT), which takes into account both plant trait and climatic control inter-dependence. We selected 161 sites from the FLUXNET2015 dataset with eddy covariance CO2 flux data and continuous meteorology to derive GPPPOT and their dominant climate control factor of vegetation growth for 42 natural PFTs. Results showed that (1) under the same phenology and incident photosynthetic active radiation, the maximal variance of GPPPOT is found in different PFTs of forests (10.9 g C m- 2 day-1) and in different climatic zones of grasslands (>10 g C m- 2 day-1), (2) intra-annual change of GPP in tropical and arid climate zones is mostly driven by vapor pressure deficit (VPD) changes, while temperature is the dominant climate control factor in temperate, boreal and polar climate zones, even under the same climate condition, physiological stress in photosynthesis is different across PFTs, (3) the model that takes into account the plant trait difference across PFTs had a higher agreement with flux tower-based GPP data (GPPflux) than the GPP products that omit PFT differences. Such agreement was highest for natural vegetation cover sites (R2 = 0.77, RMSE = 1.79 g C m- 2 day- 1). These results suggest that global scale GPP models should incorporate both plant traits and their dominant climate control factor variance in various PFT to reduce the uncertainties in terrestrial carbon assessments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Applied Earth Observation and Geoinformation

  • ISSN

    1569-8432

  • e-ISSN

    1872-826X

  • Svazek periodika

    100

  • Číslo periodika v rámci svazku

    AUG

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    102328

  • Kód UT WoS článku

    000647797000002

  • EID výsledku v databázi Scopus

    2-s2.0-85120692569