Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00544203" target="_blank" >RIV/86652079:_____/21:00544203 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-4433/12/7/913" target="_blank" >https://www.mdpi.com/2073-4433/12/7/913</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/atmos12070913" target="_blank" >10.3390/atmos12070913</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes

  • Popis výsledku v původním jazyce

    Satisfactory requirements for the spatial resolution of climate and the influences of soil data in defining the starting points, endings, and the intensities of droughts have become matters of discussion in recent years. The overall inclusiveness of the modelling tools applied is also frequently discussed. In this light, five model setups (MSs) of the daily SoilClim water balance model were developed and tested for the Czech Republic (CR) in the 1961-2020 period. These included two versions of the SoilClim model, two sets of soil data, and two sets of climatic data at different spatial resolutions. MS1-MS4 were based on local, spatially-interpolated data from meteorological stations (500 x 500 m resolution), while MS5 was developed for global drought monitoring, based on the coarser ERA5-Land reanalysis (0.1 degrees x 0.1 degrees). During the 1961-2020 period, all the MSs indicated strong, statistically significant increases in the occurrence of 10th-percentile soil drought in the April-June season, however, trends remained largely non-significant for the remainder of the year. Variations among MS1-MS4 demonstrate that the range of soil property input data affects results to a lesser extent than different modelling schemes. The major simplification of the model grid in MS5 still led to an acceptable conformity of results, while the non-conformities disclosed may be explained by differences between meteorological inputs. Comparison with the Palmer Drought Severity Index (PDSI) confirmed that the SoilClim model depicts the variability of soil drought occurrence in greater detail, while PDSI tends to highlight the most severe events. The discussion arising out of the study centers around model uncertainties and the expression of soil drought episodes in different MSs.

  • Název v anglickém jazyce

    Effects of Climatic and Soil Data on Soil Drought Monitoring Based on Different Modelling Schemes

  • Popis výsledku anglicky

    Satisfactory requirements for the spatial resolution of climate and the influences of soil data in defining the starting points, endings, and the intensities of droughts have become matters of discussion in recent years. The overall inclusiveness of the modelling tools applied is also frequently discussed. In this light, five model setups (MSs) of the daily SoilClim water balance model were developed and tested for the Czech Republic (CR) in the 1961-2020 period. These included two versions of the SoilClim model, two sets of soil data, and two sets of climatic data at different spatial resolutions. MS1-MS4 were based on local, spatially-interpolated data from meteorological stations (500 x 500 m resolution), while MS5 was developed for global drought monitoring, based on the coarser ERA5-Land reanalysis (0.1 degrees x 0.1 degrees). During the 1961-2020 period, all the MSs indicated strong, statistically significant increases in the occurrence of 10th-percentile soil drought in the April-June season, however, trends remained largely non-significant for the remainder of the year. Variations among MS1-MS4 demonstrate that the range of soil property input data affects results to a lesser extent than different modelling schemes. The major simplification of the model grid in MS5 still led to an acceptable conformity of results, while the non-conformities disclosed may be explained by differences between meteorological inputs. Comparison with the Palmer Drought Severity Index (PDSI) confirmed that the SoilClim model depicts the variability of soil drought occurrence in greater detail, while PDSI tends to highlight the most severe events. The discussion arising out of the study centers around model uncertainties and the expression of soil drought episodes in different MSs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10510 - Climatic research

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmosphere

  • ISSN

    2073-4433

  • e-ISSN

    2073-4433

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    20

  • Strana od-do

    913

  • Kód UT WoS článku

    000675957200001

  • EID výsledku v databázi Scopus

    2-s2.0-85111149152