Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F21%3A00545755" target="_blank" >RIV/86652079:_____/21:00545755 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/21:43920090

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0378377421003292?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378377421003292?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.agwat.2021.107064" target="_blank" >10.1016/j.agwat.2021.107064</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic

  • Popis výsledku v původním jazyce

    Indicators based on evapotranspiration (ET) provide useful information about surface water status, response of vegetation to drought stress, and potential growth limitations. The capability of ET-based indicators, including actual ET and the evaporative stress index (ESI), to predict crop yields of spring barley and winter wheat was analyzed for 33 districts of the Czech Republic. In this study, the ET-based indicators were computed using two different approaches: (i) a prognostic model, SoilClim, which computes the water balance based on ground weather observations and information about soil and land cover, (ii) the diagnostic Atmosphere-Land Exchange Inverse (ALEXI) model based primarily on remotely sensed land surface temperature data. The capability of both sets of indicators to predict yields of spring barley and winter wheat was tested using artificial neural networks (ANNs) applied to the adjusting number and timeframe of inputs during the growing season. Yield predictions based on ANNs were computed for both crops for all districts together, as well as for individual districts. The mot mean square error (RMSE) and coefficient of determination (R-2) between observed and predicted yields varied with date within the growing season and with the number of ANN inputs used for yield prediction. The period with the highest predictive capability started from early-June to mid-June. This optimal period for yield prediction was identifiable already at the lower number of ANN inputs, nevertheless, the accuracy of the prediction improved as more inputs were included within ANNs.The RMSE values for individual districts varied between 0.4 and 0.7 t ha(-1) while R-2 reached values of 0.5-0.8 during the optimal period. Results of the study demonstrated that ET-based indicators can be used for yield prediction in real time during the growing season and therefore have great potential for decision making at regional and district levels.

  • Název v anglickém jazyce

    Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic

  • Popis výsledku anglicky

    Indicators based on evapotranspiration (ET) provide useful information about surface water status, response of vegetation to drought stress, and potential growth limitations. The capability of ET-based indicators, including actual ET and the evaporative stress index (ESI), to predict crop yields of spring barley and winter wheat was analyzed for 33 districts of the Czech Republic. In this study, the ET-based indicators were computed using two different approaches: (i) a prognostic model, SoilClim, which computes the water balance based on ground weather observations and information about soil and land cover, (ii) the diagnostic Atmosphere-Land Exchange Inverse (ALEXI) model based primarily on remotely sensed land surface temperature data. The capability of both sets of indicators to predict yields of spring barley and winter wheat was tested using artificial neural networks (ANNs) applied to the adjusting number and timeframe of inputs during the growing season. Yield predictions based on ANNs were computed for both crops for all districts together, as well as for individual districts. The mot mean square error (RMSE) and coefficient of determination (R-2) between observed and predicted yields varied with date within the growing season and with the number of ANN inputs used for yield prediction. The period with the highest predictive capability started from early-June to mid-June. This optimal period for yield prediction was identifiable already at the lower number of ANN inputs, nevertheless, the accuracy of the prediction improved as more inputs were included within ANNs.The RMSE values for individual districts varied between 0.4 and 0.7 t ha(-1) while R-2 reached values of 0.5-0.8 during the optimal period. Results of the study demonstrated that ET-based indicators can be used for yield prediction in real time during the growing season and therefore have great potential for decision making at regional and district levels.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    40101 - Agriculture

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Agricultural Water Management

  • ISSN

    0378-3774

  • e-ISSN

    1873-2283

  • Svazek periodika

    256

  • Číslo periodika v rámci svazku

    OCT

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    107064

  • Kód UT WoS článku

    000691191900002

  • EID výsledku v databázi Scopus

    2-s2.0-85110307945