Improving the simulation of permanent grasslands across Germany by using multi-objective uncertainty-based calibration of plant-water dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00557268" target="_blank" >RIV/86652079:_____/22:00557268 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1161030122000120" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1161030122000120</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eja.2022.126464" target="_blank" >10.1016/j.eja.2022.126464</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving the simulation of permanent grasslands across Germany by using multi-objective uncertainty-based calibration of plant-water dynamics
Popis výsledku v původním jazyce
The dynamics of grassland ecosystems are highly complex due to multifaceted interactions among their soil, water, and vegetation components. Precise simulations of grassland productivity therefore rely on accurately estimating a variety of parameters that characterize different processes of these systems. This study applied three calibration schemes a Single-Objective (SO-SUFI2), a Multi-Objective Pareto (MO-Pareto), and, a novel Uncertainty-Based Multi-Objective (MO-SUFI2) to estimate the parameters of MONICA (Model for Nitrogen and Carbon Simulation) agro-ecosystem model in grassland ecosystems across Germany. The MO-Pareto model is based on a traditional Pareto optimality concept, while the MO-SUFI2 optimizes multiple target variables considering their level of prediction uncertainty. We used measurements of leaf area index, aboveground biomass, and soil moisture from experimental data at five sites with different intensities of cutting regimes (from two to five cutting events per season) to evaluate model performance. Both MO-Pareto and MO-SUFI2 outperformed SO-SUFI2 during calibration and validation. The comparison of the two MO approaches shows that they do not necessarily conflict with each other, but MO-SUFI2 provides complementary information for better estimations of model parameter uncertainty. We used the obtained parameter ranges to simulate grassland productivity across Germany under different cutting regimes and quantified the uncertainty associated with estimated productivity across regions. The results showed higher uncertainty in intensively managed grasslands compared to extensively managed grasslands, partially due to a lack of high-resolution input information concerning cutting dates. Furthermore, the additional information on the quantified uncertainty provided by our proposed MO-SUFI2 method adds deeper insights on confidence levels of estimated productivity. Benefiting from additional management data collected at high resolution and ground measurements on the composition of grassland species mixtures appear to be promising solutions to reduce uncertainty and increase model reliability.
Název v anglickém jazyce
Improving the simulation of permanent grasslands across Germany by using multi-objective uncertainty-based calibration of plant-water dynamics
Popis výsledku anglicky
The dynamics of grassland ecosystems are highly complex due to multifaceted interactions among their soil, water, and vegetation components. Precise simulations of grassland productivity therefore rely on accurately estimating a variety of parameters that characterize different processes of these systems. This study applied three calibration schemes a Single-Objective (SO-SUFI2), a Multi-Objective Pareto (MO-Pareto), and, a novel Uncertainty-Based Multi-Objective (MO-SUFI2) to estimate the parameters of MONICA (Model for Nitrogen and Carbon Simulation) agro-ecosystem model in grassland ecosystems across Germany. The MO-Pareto model is based on a traditional Pareto optimality concept, while the MO-SUFI2 optimizes multiple target variables considering their level of prediction uncertainty. We used measurements of leaf area index, aboveground biomass, and soil moisture from experimental data at five sites with different intensities of cutting regimes (from two to five cutting events per season) to evaluate model performance. Both MO-Pareto and MO-SUFI2 outperformed SO-SUFI2 during calibration and validation. The comparison of the two MO approaches shows that they do not necessarily conflict with each other, but MO-SUFI2 provides complementary information for better estimations of model parameter uncertainty. We used the obtained parameter ranges to simulate grassland productivity across Germany under different cutting regimes and quantified the uncertainty associated with estimated productivity across regions. The results showed higher uncertainty in intensively managed grasslands compared to extensively managed grasslands, partially due to a lack of high-resolution input information concerning cutting dates. Furthermore, the additional information on the quantified uncertainty provided by our proposed MO-SUFI2 method adds deeper insights on confidence levels of estimated productivity. Benefiting from additional management data collected at high resolution and ground measurements on the composition of grassland species mixtures appear to be promising solutions to reduce uncertainty and increase model reliability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Agronomy
ISSN
1161-0301
e-ISSN
1873-7331
Svazek periodika
134
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
126464
Kód UT WoS článku
000784446200004
EID výsledku v databázi Scopus
2-s2.0-85123617881