Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00559880" target="_blank" >RIV/86652079:_____/22:00559880 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s13593-022-00805-4" target="_blank" >https://link.springer.com/article/10.1007/s13593-022-00805-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s13593-022-00805-4" target="_blank" >10.1007/s13593-022-00805-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review
Popis výsledku v původním jazyce
Intensive agriculture in Germany is not only highly productive but has also led to detrimental effects in the environment. Crop diversification together with new field arrangements considering soil heterogeneities can be an alternative to improve resource use efficiency (RUE), ecosystem services (ESS), and biodiversity. Agroecosystem models are tools that help us to understand and design diversified new field arrangements. The main goal of this study was to review the extent to which agroecosystem models have been used for crop diversification design at field and landscape scale by considering soil heterogeneities and to understand the model requirements for this purpose. We found several agroecosystem models available for simulating spatiotemporal crop diversification at the field scale. For spatial crop diversification, simplified modelling approaches consider crop interactions for light, water, and nutrients, but they offer restricted crop combinations. For temporal crop diversification, agroecosystem models include the major crops (e.g., cereals, legumes, and tuber crops). However, crop parameterization is limited for marginal crops and soil carbon and nitrogen (N). At the landscape scale, decision-making frameworks are commonly used to design diversified cropping systems. Within-field soil heterogeneities are rarely considered in field or landscape design studies. Combining static frameworks with dynamic agroecosystems models can be useful for the design and evaluation of trade-offs for ESS delivery and biodiversity. To enhance modeling capabilities to simulate diversified cropping systems in new field arrangements, it will be necessary to improve the representation of crop interactions, the inclusion of more crop species options, soil legacy effects, and biodiversity estimations. Newly diversified field arrangement design also requires higher data resolution, which can be generated via remote sensing and field sensors. We propose the implementation of a framework that combines static approaches and process-based models for new optimized field arrangement design and propose respective experiments for testing the combined framework.
Název v anglickém jazyce
Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review
Popis výsledku anglicky
Intensive agriculture in Germany is not only highly productive but has also led to detrimental effects in the environment. Crop diversification together with new field arrangements considering soil heterogeneities can be an alternative to improve resource use efficiency (RUE), ecosystem services (ESS), and biodiversity. Agroecosystem models are tools that help us to understand and design diversified new field arrangements. The main goal of this study was to review the extent to which agroecosystem models have been used for crop diversification design at field and landscape scale by considering soil heterogeneities and to understand the model requirements for this purpose. We found several agroecosystem models available for simulating spatiotemporal crop diversification at the field scale. For spatial crop diversification, simplified modelling approaches consider crop interactions for light, water, and nutrients, but they offer restricted crop combinations. For temporal crop diversification, agroecosystem models include the major crops (e.g., cereals, legumes, and tuber crops). However, crop parameterization is limited for marginal crops and soil carbon and nitrogen (N). At the landscape scale, decision-making frameworks are commonly used to design diversified cropping systems. Within-field soil heterogeneities are rarely considered in field or landscape design studies. Combining static frameworks with dynamic agroecosystems models can be useful for the design and evaluation of trade-offs for ESS delivery and biodiversity. To enhance modeling capabilities to simulate diversified cropping systems in new field arrangements, it will be necessary to improve the representation of crop interactions, the inclusion of more crop species options, soil legacy effects, and biodiversity estimations. Newly diversified field arrangement design also requires higher data resolution, which can be generated via remote sensing and field sensors. We propose the implementation of a framework that combines static approaches and process-based models for new optimized field arrangement design and propose respective experiments for testing the combined framework.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agronomy for Sustainable Development
ISSN
1774-0746
e-ISSN
1773-0155
Svazek periodika
42
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
25
Strana od-do
74
Kód UT WoS článku
000827726400003
EID výsledku v databázi Scopus
2-s2.0-85134398828