Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unmanned aerial systems for modelling air pollution removal by urban greenery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00564478" target="_blank" >RIV/86652079:_____/22:00564478 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43410/22:43922144 RIV/60460709:41330/22:91590 RIV/47813059:19630/22:A0000221 RIV/61989100:27710/22:10251660

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1618866722003004?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1618866722003004?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ufug.2022.127757" target="_blank" >10.1016/j.ufug.2022.127757</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unmanned aerial systems for modelling air pollution removal by urban greenery

  • Popis výsledku v původním jazyce

    Urban greenery plays an important role in reducing air pollution, being one of the often-used, nature-based measures in sustainable and climate-resilient urban development. However, when modelling its effect on air pollution removal by dry deposition, coarse and time-limited data on vegetation properties are often included, disregarding the high spatial and temporal heterogeneity in urban forest canopies. Here, we present a detailed, physics-based approach for modelling particulate matter (PM10) and tropospheric ozone (O-3) removal by urban greenery on a small scale that eliminates these constraints. Our procedure combines a dense network of low-cost optical and electrochemical air pollution sensors, and a remote sensing method for greenery structure monitoring derived from Unmanned aerial systems (UAS) imagery processed by the Structure from Motion (SfM) algorithm. This approach enabled the quantification of species- and individual-specific air pollution removal rates by woody plants throughout the growing season, exploring the high spatial and temporal variability of modelled removal rates within an urban forest. The total PM10 and O-3 removal rates ranged from 7.6 g m(-2) (PM10) and 12.6 g m(-2) (O-3) for mature trees of Acer pseudoplatanus to 0.1 g m(-2) and 0.1 g m(-2) for newly planted tree saplings of Salix daphnoides. The present study demonstrates that UAS-SfM can detect differences in structures among and within canopies and by involving these characteristics, they can shift the modelling of air pollution removal towards a level of individual woody plants and beyond, enabling more realistic and accurate quantification of air pollution removal. Moreover, this approach can be similarly applied when modelling other ecosystem services provided by urban greenery.

  • Název v anglickém jazyce

    Unmanned aerial systems for modelling air pollution removal by urban greenery

  • Popis výsledku anglicky

    Urban greenery plays an important role in reducing air pollution, being one of the often-used, nature-based measures in sustainable and climate-resilient urban development. However, when modelling its effect on air pollution removal by dry deposition, coarse and time-limited data on vegetation properties are often included, disregarding the high spatial and temporal heterogeneity in urban forest canopies. Here, we present a detailed, physics-based approach for modelling particulate matter (PM10) and tropospheric ozone (O-3) removal by urban greenery on a small scale that eliminates these constraints. Our procedure combines a dense network of low-cost optical and electrochemical air pollution sensors, and a remote sensing method for greenery structure monitoring derived from Unmanned aerial systems (UAS) imagery processed by the Structure from Motion (SfM) algorithm. This approach enabled the quantification of species- and individual-specific air pollution removal rates by woody plants throughout the growing season, exploring the high spatial and temporal variability of modelled removal rates within an urban forest. The total PM10 and O-3 removal rates ranged from 7.6 g m(-2) (PM10) and 12.6 g m(-2) (O-3) for mature trees of Acer pseudoplatanus to 0.1 g m(-2) and 0.1 g m(-2) for newly planted tree saplings of Salix daphnoides. The present study demonstrates that UAS-SfM can detect differences in structures among and within canopies and by involving these characteristics, they can shift the modelling of air pollution removal towards a level of individual woody plants and beyond, enabling more realistic and accurate quantification of air pollution removal. Moreover, this approach can be similarly applied when modelling other ecosystem services provided by urban greenery.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10511 - Environmental sciences (social aspects to be 5.7)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Urban Forestry & Urban Greening

  • ISSN

    1618-8667

  • e-ISSN

    1610-8167

  • Svazek periodika

    78

  • Číslo periodika v rámci svazku

    DEC

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    12

  • Strana od-do

    127757

  • Kód UT WoS článku

    000880161100006

  • EID výsledku v databázi Scopus

    2-s2.0-85140805916