Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F22%3A00567215" target="_blank" >RIV/86652079:_____/22:00567215 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/22:10455414
Výsledek na webu
<a href="https://www.mdpi.com/2077-0472/12/12/2080" target="_blank" >https://www.mdpi.com/2077-0472/12/12/2080</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/agriculture12122080" target="_blank" >10.3390/agriculture12122080</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series
Popis výsledku v původním jazyce
In this study, an approach for the harmonized calculation of the Leaf Area Indices (LAIs) for agronomic crops from Sentinel-2 MSI and Landsat OLI multispectral satellite data is proposed in order to obtain a dense seasonal trajectory. It was developed and tested on dominant crops grown in the Czech Republic, including winter wheat, spring barley, winter rapeseed, alfalfa, sugar beet, and corn. The two-step procedure harmonizing Sentinel-2 MSI and Landsat OLI spectral data began with deriving NDVI, MSAVI, and NDWI_1610 vegetation indices (VIs) as proxy indicators of green biomass and foliage water content, the parameters contributing most to a stand's spectral response. Second, a simple linear transformation was applied to the resulting VI values. The regression model itself was built on an artificial neural network, then trained on PROSAIL simulations data. The LAI estimates were validated using an extensive dataset of in situ measurements collected during 2017 and 2018 in the lowlands of the Central Bohemia Region. Very strong agreement was observed between LAI estimates from both Sentinel-2 MSI and Landsat OLI data and independent ground-based measurements (r between 0.7 and 0.98). Very good results were also achieved in the mutual comparison of Sentinel-2 and Landsat-based LAI datasets (rRMSE < 20%, r between 0.75 and 0.99). Using data from all currently available Sentinel-2 (A/B) and Landsat (8/9) satellites, a dense harmonized LAI time series can be created with high potential for use in precision agriculture.
Název v anglickém jazyce
Retrieval of Harmonized LAI Product of Agricultural Crops from Landsat OLI and Sentinel-2 MSI Time Series
Popis výsledku anglicky
In this study, an approach for the harmonized calculation of the Leaf Area Indices (LAIs) for agronomic crops from Sentinel-2 MSI and Landsat OLI multispectral satellite data is proposed in order to obtain a dense seasonal trajectory. It was developed and tested on dominant crops grown in the Czech Republic, including winter wheat, spring barley, winter rapeseed, alfalfa, sugar beet, and corn. The two-step procedure harmonizing Sentinel-2 MSI and Landsat OLI spectral data began with deriving NDVI, MSAVI, and NDWI_1610 vegetation indices (VIs) as proxy indicators of green biomass and foliage water content, the parameters contributing most to a stand's spectral response. Second, a simple linear transformation was applied to the resulting VI values. The regression model itself was built on an artificial neural network, then trained on PROSAIL simulations data. The LAI estimates were validated using an extensive dataset of in situ measurements collected during 2017 and 2018 in the lowlands of the Central Bohemia Region. Very strong agreement was observed between LAI estimates from both Sentinel-2 MSI and Landsat OLI data and independent ground-based measurements (r between 0.7 and 0.98). Very good results were also achieved in the mutual comparison of Sentinel-2 and Landsat-based LAI datasets (rRMSE < 20%, r between 0.75 and 0.99). Using data from all currently available Sentinel-2 (A/B) and Landsat (8/9) satellites, a dense harmonized LAI time series can be created with high potential for use in precision agriculture.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40101 - Agriculture
Návaznosti výsledku
Projekt
<a href="/cs/project/TH02030248" target="_blank" >TH02030248: Využití družicových dat Copernicus pro efektivní monitoring stavu a managementu vybraných rostlinných agrosystémů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agriculture-Basel
ISSN
2077-0472
e-ISSN
2077-0472
Svazek periodika
12
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
2080
Kód UT WoS článku
000900236700001
EID výsledku v databázi Scopus
2-s2.0-85144735552