Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using seasonal climate scenarios in the ForageAhead annual forage production model for early drought impact assessment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00572433" target="_blank" >RIV/86652079:_____/23:00572433 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/23:43923428

  • Výsledek na webu

    <a href="https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.4496" target="_blank" >https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecs2.4496</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/ecs2.4496" target="_blank" >10.1002/ecs2.4496</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using seasonal climate scenarios in the ForageAhead annual forage production model for early drought impact assessment

  • Popis výsledku v původním jazyce

    High interannual variability of forage production in semiarid grasslands leads to uncertainties when livestock producers make decisions, such as buying additional feed, relocating animals, or using flexible stocking. Within-season predictions of annual forage production (i.e., yearly production) can provide specific boundaries for producers to make these decisions with more information and possibly with higher confidence. In this study, we use a recently developed forage production model, ForageAhead, that uses environmental and seasonal climate variables to estimate the annual forage production as approximated by remotely sensed vegetation data. Because, among other variables, this model uses observed summer climate data, the model output cannot be produced early enough in the year (e.g., spring months) to inform within-season management decisions. To address this issue, we developed summer climate scenarios (e.g., extremely warm and dry and moderately cool and wet) that serve as an input in the model in combination with observed winter and spring climate data from a particular year. The summer climate scenarios used historical summer precipitation and temperature data (1950-2018) categorized into three, five, and seven percentile categories. These percentile values were then combined to represent summer climate scenarios, which were further used as the ForageAhead model input. We tested the optimal number of percentile categories to be used as the model input to obtain accurate prediction of forage production while also minimizing the number of possible temperature and precipitation combinations, which increases with the number of percentile categories. For the 19-year period analysis (2000-2018), we also determined the most and least common scenarios that occurred in the western United States. When using five percentile categories for summer precipitation and temperature, we were able to capture the interannual variability in the spatial extent of abnormally low and high biomass production. The ForageAhead predictions captured similar spatial patterns of forage anomalies as another similar model (Grass-Cast). This method can be made available in a user-friendly automated system that can be used by livestock producers and rangeland managers to inform within-season management decisions. This method can be especially valuable for flexible stocking as it provides a range of possible annual forage production scenarios by the end of May.

  • Název v anglickém jazyce

    Using seasonal climate scenarios in the ForageAhead annual forage production model for early drought impact assessment

  • Popis výsledku anglicky

    High interannual variability of forage production in semiarid grasslands leads to uncertainties when livestock producers make decisions, such as buying additional feed, relocating animals, or using flexible stocking. Within-season predictions of annual forage production (i.e., yearly production) can provide specific boundaries for producers to make these decisions with more information and possibly with higher confidence. In this study, we use a recently developed forage production model, ForageAhead, that uses environmental and seasonal climate variables to estimate the annual forage production as approximated by remotely sensed vegetation data. Because, among other variables, this model uses observed summer climate data, the model output cannot be produced early enough in the year (e.g., spring months) to inform within-season management decisions. To address this issue, we developed summer climate scenarios (e.g., extremely warm and dry and moderately cool and wet) that serve as an input in the model in combination with observed winter and spring climate data from a particular year. The summer climate scenarios used historical summer precipitation and temperature data (1950-2018) categorized into three, five, and seven percentile categories. These percentile values were then combined to represent summer climate scenarios, which were further used as the ForageAhead model input. We tested the optimal number of percentile categories to be used as the model input to obtain accurate prediction of forage production while also minimizing the number of possible temperature and precipitation combinations, which increases with the number of percentile categories. For the 19-year period analysis (2000-2018), we also determined the most and least common scenarios that occurred in the western United States. When using five percentile categories for summer precipitation and temperature, we were able to capture the interannual variability in the spatial extent of abnormally low and high biomass production. The ForageAhead predictions captured similar spatial patterns of forage anomalies as another similar model (Grass-Cast). This method can be made available in a user-friendly automated system that can be used by livestock producers and rangeland managers to inform within-season management decisions. This method can be especially valuable for flexible stocking as it provides a range of possible annual forage production scenarios by the end of May.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10510 - Climatic research

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ecosphere

  • ISSN

    2150-8925

  • e-ISSN

    2150-8925

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    e4496

  • Kód UT WoS článku

    000985615000001

  • EID výsledku v databázi Scopus

    2-s2.0-85160701938