Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Crop yield anomaly forecasting in the Pannonian basin using gradient boosting and its performance in years of severe drought

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00575101" target="_blank" >RIV/86652079:_____/23:00575101 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0168192323002873?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168192323002873?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.agrformet.2023.109596" target="_blank" >10.1016/j.agrformet.2023.109596</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Crop yield anomaly forecasting in the Pannonian basin using gradient boosting and its performance in years of severe drought

  • Popis výsledku v původním jazyce

    The increasing frequency and intensity of severe droughts over recent decades have led to substantial crop yield losses in the Pannonian Basin in southeastern Europe. Their socioeconomic consequences can be minimized by accurate crop yield forecasts, but such forecasts often underestimate the impact of severe droughts on crop yields. We developed a gradient-boosting-based crop yield anomaly forecasting system for the Pannonian Basin and examined its performance, with a focus on drought years. Winter wheat and maize yield anomalies are forecasted for 42 regions in the Pannonian Basin using predictor datasets from Earth observation and reanalysis describing vegetation state, weather, and soil moisture conditions. Our results show that crop yield anomaly estimates in the two months preceding harvest have better performance (maize errors 14-17%, wheat 13-14%) than earlier in the year (maize errors 21%, wheat 17%). The forecast models can satisfactorily capture the interannual yield anomalies, but spatial yield variability is only partially reproduced. In years of severe drought, the wheat model performs better than under average conditions with errors below 12%. The errors of the maize forecasts in drought years are larger than average forecast skill: 31% two months ahead and 20% one month ahead. However, for both crops the yield losses remain underestimated by the forecasts in severe drought years. The feature importance analysis shows that during the last two months before harvest, wheat yield anomalies are controlled by temperature and evaporation and maize by the combined effects of temperature and water availability as expressed by several drought indices. In severe drought years, during the two months before harvest the seasonal temperature forecast becomes the most important predictor for the wheat forecasts and soil moisture for the maize model. Overall, this study provides indepth insights into the impact of droughts on crop yield forecasts in the Pannonian Basin.

  • Název v anglickém jazyce

    Crop yield anomaly forecasting in the Pannonian basin using gradient boosting and its performance in years of severe drought

  • Popis výsledku anglicky

    The increasing frequency and intensity of severe droughts over recent decades have led to substantial crop yield losses in the Pannonian Basin in southeastern Europe. Their socioeconomic consequences can be minimized by accurate crop yield forecasts, but such forecasts often underestimate the impact of severe droughts on crop yields. We developed a gradient-boosting-based crop yield anomaly forecasting system for the Pannonian Basin and examined its performance, with a focus on drought years. Winter wheat and maize yield anomalies are forecasted for 42 regions in the Pannonian Basin using predictor datasets from Earth observation and reanalysis describing vegetation state, weather, and soil moisture conditions. Our results show that crop yield anomaly estimates in the two months preceding harvest have better performance (maize errors 14-17%, wheat 13-14%) than earlier in the year (maize errors 21%, wheat 17%). The forecast models can satisfactorily capture the interannual yield anomalies, but spatial yield variability is only partially reproduced. In years of severe drought, the wheat model performs better than under average conditions with errors below 12%. The errors of the maize forecasts in drought years are larger than average forecast skill: 31% two months ahead and 20% one month ahead. However, for both crops the yield losses remain underestimated by the forecasts in severe drought years. The feature importance analysis shows that during the last two months before harvest, wheat yield anomalies are controlled by temperature and evaporation and maize by the combined effects of temperature and water availability as expressed by several drought indices. In severe drought years, during the two months before harvest the seasonal temperature forecast becomes the most important predictor for the wheat forecasts and soil moisture for the maize model. Overall, this study provides indepth insights into the impact of droughts on crop yield forecasts in the Pannonian Basin.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Agricultural and Forest Meteorology

  • ISSN

    0168-1923

  • e-ISSN

    1873-2240

  • Svazek periodika

    340

  • Číslo periodika v rámci svazku

    SEP

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    109596

  • Kód UT WoS článku

    001044625800001

  • EID výsledku v databázi Scopus

    2-s2.0-85166640748