Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00575201" target="_blank" >RIV/86652079:_____/23:00575201 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985939:_____/23:00574310
Výsledek na webu
<a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2435.14226" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2435.14226</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1365-2435.14226" target="_blank" >10.1111/1365-2435.14226</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas
Popis výsledku v původním jazyce
It is a challenge to scale-up from simplified proxies to ecosystem functioning since the inherent complexity of natural ecosystems hinders such an approach. One way to address this complexity is to track ecosystem processes through the lens of plant functional traits. Elevational gradients with diverse biotic and abiotic conditions offer ideal settings for inferring functional trait responses to environmental gradients globally. However, most studies have focused on differences in mean trait values among species, and little is known on how intraspecific traits vary along wide elevational gradients and how this variability reflects ecosystem productivity. We measured functional traits of the sub-shrub Koenigia mollis (Basionym: Polygonum molle, a widespread species) in 11 populations along a wide elevational gradient (1515-4216 m) considering from subtropical forest to alpine treeline in the central Himalayas. After measuring different traits (plant height, specific leaf area, leaf area, length of flowering branches, leaf carbon isotope (delta C-13), leaf carbon and leaf nitrogen concentrations), we investigated drivers on changes of these traits and also characterized their relationships with elevation, climate and ecosystem productivity. All trait values decreased with increasing elevation, except for delta C-13 that increased upwards. Likewise, most traits showed strong positive relationships with potential evapotranspiration, while delta C-13 exhibited a negative relationship. In this context, elevation-dependent water-energy dynamics is the primary driver of trait variations. Furthermore, six key traits (plant height, length of flowering branch, specific leaf area, leaf carbon, leaf nitrogen and leaf delta C-13) explained 90.45% of the variance in ecosystem productivity. Our study evidences how elevation-dependent climate variations affect ecosystem processes and functions. Intraspecific variability in leaf functional traits is strongly driven by changes in water-energy dynamics, and reflects changes in ecosystem productivity over elevation. K. mollis, with one of the widest elevational gradients known to date, could be a model species to infer functional trait responses to environmental gradients globally. As inferred from K. mollis, the water-energy dynamics can be a hydrothermal variable to understand the formation of vegetation boundaries, such as alpine treeline. This study sheds new insight on how plants modify their basic ecological strategies to cope with changing environments. Read the free Plain Language Summary for this article on the Journal blog.
Název v anglickém jazyce
Functional traits of a plant species fingerprint ecosystem productivity along broad elevational gradients in the Himalayas
Popis výsledku anglicky
It is a challenge to scale-up from simplified proxies to ecosystem functioning since the inherent complexity of natural ecosystems hinders such an approach. One way to address this complexity is to track ecosystem processes through the lens of plant functional traits. Elevational gradients with diverse biotic and abiotic conditions offer ideal settings for inferring functional trait responses to environmental gradients globally. However, most studies have focused on differences in mean trait values among species, and little is known on how intraspecific traits vary along wide elevational gradients and how this variability reflects ecosystem productivity. We measured functional traits of the sub-shrub Koenigia mollis (Basionym: Polygonum molle, a widespread species) in 11 populations along a wide elevational gradient (1515-4216 m) considering from subtropical forest to alpine treeline in the central Himalayas. After measuring different traits (plant height, specific leaf area, leaf area, length of flowering branches, leaf carbon isotope (delta C-13), leaf carbon and leaf nitrogen concentrations), we investigated drivers on changes of these traits and also characterized their relationships with elevation, climate and ecosystem productivity. All trait values decreased with increasing elevation, except for delta C-13 that increased upwards. Likewise, most traits showed strong positive relationships with potential evapotranspiration, while delta C-13 exhibited a negative relationship. In this context, elevation-dependent water-energy dynamics is the primary driver of trait variations. Furthermore, six key traits (plant height, length of flowering branch, specific leaf area, leaf carbon, leaf nitrogen and leaf delta C-13) explained 90.45% of the variance in ecosystem productivity. Our study evidences how elevation-dependent climate variations affect ecosystem processes and functions. Intraspecific variability in leaf functional traits is strongly driven by changes in water-energy dynamics, and reflects changes in ecosystem productivity over elevation. K. mollis, with one of the widest elevational gradients known to date, could be a model species to infer functional trait responses to environmental gradients globally. As inferred from K. mollis, the water-energy dynamics can be a hydrothermal variable to understand the formation of vegetation boundaries, such as alpine treeline. This study sheds new insight on how plants modify their basic ecological strategies to cope with changing environments. Read the free Plain Language Summary for this article on the Journal blog.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Functional Ecology
ISSN
0269-8463
e-ISSN
1365-2435
Svazek periodika
37
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
383-394
Kód UT WoS článku
000888916800001
EID výsledku v databázi Scopus
2-s2.0-85142303697