Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00583881" target="_blank" >RIV/86652079:_____/24:00583881 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43410/24:43924501 RIV/60460709:41320/24:100564 RIV/44555601:13520/24:43898398 RIV/00216208:11310/24:10488696

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969723083225?ref=pdf_download&fr=RR-2&rr=8612eccecfc1b353" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969723083225?ref=pdf_download&fr=RR-2&rr=8612eccecfc1b353</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2023.169692" target="_blank" >10.1016/j.scitotenv.2023.169692</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe

  • Popis výsledku v původním jazyce

    To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.

  • Název v anglickém jazyce

    Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe

  • Popis výsledku anglicky

    To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20705 - Remote sensing

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Svazek periodika

    913

  • Číslo periodika v rámci svazku

    FEB

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    169692

  • Kód UT WoS článku

    001158139800001

  • EID výsledku v databázi Scopus

    2-s2.0-85181767010