Phenology of Photosynthesis in Winter-Dormant Temperate and Boreal Forests: Long-Term Observations From Flux Towers and Quantitative Evaluation of Phenology Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00585733" target="_blank" >RIV/86652079:_____/24:00585733 - isvavai.cz</a>
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JG007839" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JG007839</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2023JG007839" target="_blank" >10.1029/2023JG007839</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phenology of Photosynthesis in Winter-Dormant Temperate and Boreal Forests: Long-Term Observations From Flux Towers and Quantitative Evaluation of Phenology Models
Popis výsledku v původním jazyce
We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPP and EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2 to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity similar to 3 weeks before end of snowmelt, while DBF forests achieved that capacity similar to 4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d-1) than ENF (1.10% d-1), and their active season length (EndGPP-StartGPP) was similar to 50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long-term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP (1.3-2.5 days degrees C-1) or later EndGPP (1.5-1.8 days degrees C-1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPP and EndGPP. For ENF forests, air temperature- and daylength-based models provided best predictions for StartGPP, while a chilling-degree-day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPP and EndGPP were 11.7 and 11.3 days, respectively. For DBF forests, temperature- and daylength-based models yielded the best results (RMSE 6.3 and 10.5 days).
Název v anglickém jazyce
Phenology of Photosynthesis in Winter-Dormant Temperate and Boreal Forests: Long-Term Observations From Flux Towers and Quantitative Evaluation of Phenology Models
Popis výsledku anglicky
We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPP and EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2 to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity similar to 3 weeks before end of snowmelt, while DBF forests achieved that capacity similar to 4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d-1) than ENF (1.10% d-1), and their active season length (EndGPP-StartGPP) was similar to 50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long-term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP (1.3-2.5 days degrees C-1) or later EndGPP (1.5-1.8 days degrees C-1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPP and EndGPP. For ENF forests, air temperature- and daylength-based models provided best predictions for StartGPP, while a chilling-degree-day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPP and EndGPP were 11.7 and 11.3 days, respectively. For DBF forests, temperature- and daylength-based models yielded the best results (RMSE 6.3 and 10.5 days).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geophysical Research-Biogeosciences
ISSN
2169-8953
e-ISSN
2169-8961
Svazek periodika
129
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
e2023JG007839
Kód UT WoS článku
001208690000001
EID výsledku v databázi Scopus
2-s2.0-85191734712