CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00600527" target="_blank" >RIV/86652079:_____/24:00600527 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/22797254.2024.2396932" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/22797254.2024.2396932</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/22797254.2024.2396932" target="_blank" >10.1080/22797254.2024.2396932</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography
Popis výsledku v původním jazyce
This study presents a new approach for predicting forest aboveground biomass (AGB) from airborne laser scanning (ALS) data: AGB is predicted from sequences of images depicting vertical cross-sections through the ALS point clouds. A 3D version of the VGG16 convolutional neural network (CNN) with initial weights transferred from pre-training on the ImageNet dataset was used. The approach was tested on datasets from Canada, Poland, and the Czech Republic. To analyse the effect of training sample size on model performance, different-sized samples ranging from 10 to 375 ground plots were used. The CNNs were compared with random forest models (RFs) trained on point cloud metrics. At the maximum number of training samples, the difference in RMSE between observed and predicted AGB of CNNs and RFs ranged from2 t/ha to 5 t/ha, and the difference in squared Pearson correlation coefficient ranged from0.05 to 0.06. Additional pre-training on synthetic data derived from virtual laser scanning of simulated forest stands could only improve the prediction performance of the CNNs when only a few real training samples (10-40) were available. While 3D CNNs trained on cross-section images derived from real data showed promising results, RFs remain a competitive alternative.
Název v anglickém jazyce
CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography
Popis výsledku anglicky
This study presents a new approach for predicting forest aboveground biomass (AGB) from airborne laser scanning (ALS) data: AGB is predicted from sequences of images depicting vertical cross-sections through the ALS point clouds. A 3D version of the VGG16 convolutional neural network (CNN) with initial weights transferred from pre-training on the ImageNet dataset was used. The approach was tested on datasets from Canada, Poland, and the Czech Republic. To analyse the effect of training sample size on model performance, different-sized samples ranging from 10 to 375 ground plots were used. The CNNs were compared with random forest models (RFs) trained on point cloud metrics. At the maximum number of training samples, the difference in RMSE between observed and predicted AGB of CNNs and RFs ranged from2 t/ha to 5 t/ha, and the difference in squared Pearson correlation coefficient ranged from0.05 to 0.06. Additional pre-training on synthetic data derived from virtual laser scanning of simulated forest stands could only improve the prediction performance of the CNNs when only a few real training samples (10-40) were available. While 3D CNNs trained on cross-section images derived from real data showed promising results, RFs remain a competitive alternative.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20705 - Remote sensing
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Remote Sensing
ISSN
2279-7254
e-ISSN
2279-7254
Svazek periodika
57
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
19
Strana od-do
2396932
Kód UT WoS článku
001308185200001
EID výsledku v databázi Scopus
2-s2.0-85203310416