Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Enhancing Chlorophyll Content Estimation With Sentinel-2 Imagery: A Fusion Of Deep Learning And Biophysical Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00601484" target="_blank" >RIV/86652079:_____/24:00601484 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/xpl/conhome/10640349/proceeding" target="_blank" >https://ieeexplore.ieee.org/xpl/conhome/10640349/proceeding</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IGARSS53475.2024" target="_blank" >10.1109/IGARSS53475.2024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Enhancing Chlorophyll Content Estimation With Sentinel-2 Imagery: A Fusion Of Deep Learning And Biophysical Models

  • Popis výsledku v původním jazyce

    Understanding the status of plant traits associated with photosynthesis is essential to gain insights into the carbon dynamics of forest ecosystems and their interconnectedness with global climate change processes. Chlorophyll is a key biochemical component as it is integral to the photosynthetic mechanism. Chlorophyll content (Cab) is therefore widely used to track vegetation dynamics and assess the health status of canopies. In this paper, we present an innovative approach to accurately estimate chlorophyll content at the canopy level by integrating radiative transfer models (RTMs) with deep learning algorithms. Our methodology utilizes a U-Net deep learning model trained with Sentinel-2 (SE2) imagery and the chlorophyll content obtained from resampled SE2 reflectance simulations conducted with the Pro4SAIL model. We evaluated the resulting Cab predictions against leaf chlorophyll content measured in Lanžhot forest, Czechia, during six field campaigns in 2019 and 2020. Our models effectively captured the complexities of forest canopies in Lanžhot forest, where they achieved an RMSE of 8.4 µg/cm2 and MAE of 6.22 µg/cm2. The findings highlight the potential of integrating deep learning algorithms with RTMs and Sentinel-2 time series for chlorophyll content retrieval. The approach not only reduces processing time but also eliminates bottlenecks associated with extrapolating plant trait inversions from RTMs to satellite images. The proposed method significantly enhances the feasibility of integrating RTMs into near real-time monitoring systems. This integration holds promise to the track biochemical effects of biotic (e.g., bark beetle attacks) and abiotic forest disturbances (e.g., drought). By leveraging the synergy of RTMs, deep learning algorithms, and Sentinel2 imagery, this work addresses the challenges of timely and accurate monitoring in dynamic forest ecosystems.

  • Název v anglickém jazyce

    Enhancing Chlorophyll Content Estimation With Sentinel-2 Imagery: A Fusion Of Deep Learning And Biophysical Models

  • Popis výsledku anglicky

    Understanding the status of plant traits associated with photosynthesis is essential to gain insights into the carbon dynamics of forest ecosystems and their interconnectedness with global climate change processes. Chlorophyll is a key biochemical component as it is integral to the photosynthetic mechanism. Chlorophyll content (Cab) is therefore widely used to track vegetation dynamics and assess the health status of canopies. In this paper, we present an innovative approach to accurately estimate chlorophyll content at the canopy level by integrating radiative transfer models (RTMs) with deep learning algorithms. Our methodology utilizes a U-Net deep learning model trained with Sentinel-2 (SE2) imagery and the chlorophyll content obtained from resampled SE2 reflectance simulations conducted with the Pro4SAIL model. We evaluated the resulting Cab predictions against leaf chlorophyll content measured in Lanžhot forest, Czechia, during six field campaigns in 2019 and 2020. Our models effectively captured the complexities of forest canopies in Lanžhot forest, where they achieved an RMSE of 8.4 µg/cm2 and MAE of 6.22 µg/cm2. The findings highlight the potential of integrating deep learning algorithms with RTMs and Sentinel-2 time series for chlorophyll content retrieval. The approach not only reduces processing time but also eliminates bottlenecks associated with extrapolating plant trait inversions from RTMs to satellite images. The proposed method significantly enhances the feasibility of integrating RTMs into near real-time monitoring systems. This integration holds promise to the track biochemical effects of biotic (e.g., bark beetle attacks) and abiotic forest disturbances (e.g., drought). By leveraging the synergy of RTMs, deep learning algorithms, and Sentinel2 imagery, this work addresses the challenges of timely and accurate monitoring in dynamic forest ecosystems.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20705 - Remote sensing

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2023048" target="_blank" >LM2023048: Česká infrastruktura sledování uhlíku</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)

  • ISBN

    979-8-3503-6032-5

  • ISSN

    2153-7003

  • e-ISSN

  • Počet stran výsledku

    9400

  • Strana od-do

    4486-4489

  • Název nakladatele

    IEEE Geoscience and Remote Sensing Society (GRSS)

  • Místo vydání

    Athény

  • Místo konání akce

    Athény

  • Datum konání akce

    7. 7. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku