Acclimation of barley plants to elevated CO2 concentration and high light intensity does not increase their protection against drought, heat, and their combination
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00602735" target="_blank" >RIV/86652079:_____/24:00602735 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61988987:17310/24:A25039O0 RIV/62156489:43210/24:43925989
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2667064X24003403?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2667064X24003403?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.stress.2024.100687" target="_blank" >10.1016/j.stress.2024.100687</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acclimation of barley plants to elevated CO2 concentration and high light intensity does not increase their protection against drought, heat, and their combination
Popis výsledku v původním jazyce
Plants face fluctuations in environmental conditions throughout their life cycles. Some of these conditions, such as CO2 concentration and increasing temperature, are closely linked to ongoing climate change. These conditions not only affect plant growth and development but also modify the response to sudden exposure to stressors through morphological, physiological, and biochemical acclimation. Understanding these responses is therefore important for defining adaptation strategies for future crop production. In this study, we tested the acclimation effect of light intensity (low, high) and CO2 concentration (low, ambient, elevated) on barley plants and its implications for subsequent responses to drought, heat, and their combination. The acclimation to the growth conditions induced numerous changes both in plant morphology and physiology. The whole-plant leaf area was stimulated by increasing light intensity and CO2 concentration. That led to increased whole-plant transpiration despite the trend of stomatal conductance was the opposite in comparison to leaf area. The increased whole-plant transpiration then increased the sensitivity of barley plants to the stress treatments. Similarly, the stimulatory effect of high light intensity on antioxidative capacity was not sufficient to improve barley performance under the stress treatments. The presented results show that for physiological or biochemical indicators of stress tolerance to be realistically used to evaluate the expected response to stress conditions, they must be related to the morphology of the whole plant, which influences both the severity of stress and the quantitative role of resistance mechanisms.
Název v anglickém jazyce
Acclimation of barley plants to elevated CO2 concentration and high light intensity does not increase their protection against drought, heat, and their combination
Popis výsledku anglicky
Plants face fluctuations in environmental conditions throughout their life cycles. Some of these conditions, such as CO2 concentration and increasing temperature, are closely linked to ongoing climate change. These conditions not only affect plant growth and development but also modify the response to sudden exposure to stressors through morphological, physiological, and biochemical acclimation. Understanding these responses is therefore important for defining adaptation strategies for future crop production. In this study, we tested the acclimation effect of light intensity (low, high) and CO2 concentration (low, ambient, elevated) on barley plants and its implications for subsequent responses to drought, heat, and their combination. The acclimation to the growth conditions induced numerous changes both in plant morphology and physiology. The whole-plant leaf area was stimulated by increasing light intensity and CO2 concentration. That led to increased whole-plant transpiration despite the trend of stomatal conductance was the opposite in comparison to leaf area. The increased whole-plant transpiration then increased the sensitivity of barley plants to the stress treatments. Similarly, the stimulatory effect of high light intensity on antioxidative capacity was not sufficient to improve barley performance under the stress treatments. The presented results show that for physiological or biochemical indicators of stress tolerance to be realistically used to evaluate the expected response to stress conditions, they must be related to the morphology of the whole plant, which influences both the severity of stress and the quantitative role of resistance mechanisms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plant Stress
ISSN
2667-064X
e-ISSN
2667-064X
Svazek periodika
14
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
100687
Kód UT WoS článku
001368945200001
EID výsledku v databázi Scopus
2-s2.0-85210270846