Radiation Limits the Yield Potential of Main Crops Under Selected Agrivoltaic Designs-A Case Study of a New Shading Simulation Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00603080" target="_blank" >RIV/86652079:_____/24:00603080 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-4395/14/11/2511" target="_blank" >https://www.mdpi.com/2073-4395/14/11/2511</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/agronomy14112511" target="_blank" >10.3390/agronomy14112511</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radiation Limits the Yield Potential of Main Crops Under Selected Agrivoltaic Designs-A Case Study of a New Shading Simulation Method
Popis výsledku v původním jazyce
Agrivoltaics (APVs) represent a growing technology in Europe that enables the co-location of energy and food production in the same field. Photosynthesis requires photosynthetic active radiation, which is reduced by the shadows cast on crops by APV panels. The design of the module rows, material, and field orientation significantly influences the radiation distribution on the ground. In this context, we introduce an innovative approach for the effective simulation of the shading effects of various APV designs. We performed an extensive sensitivity analysis of the photovoltaic (PV) geometry influence on the ground-incident radiation and crop growth of selected cultivars. Simulations (2013-2021) for three representative arable crops in eastern Austria (winter wheat, spring barley, and maize) and seven different APV designs that only limited to the shading effect showed that maize and spring barley experienced the greatest annual above-ground biomass and grain yield reduction (up to 25%), with significant differences between the APV design and the weather conditions. While spring barley had similar decreases within the years, maize was characterized by high variability. Winter wheat had only up to a 10% reduction due to shading and a reduced photosynthetic performance. Cold/humid/cloudy weather during the growing season had more negative yield effects under APVs than dry/hot periods, particularly for summer crops such as maize. The lowest grain yield decline was achieved for all three crops in the APV design in which the modules were oriented to the east at a height of 5 m and mounted on trackers with an inclination of +/-50 degrees. This scenario also resulted in the highest land equivalent ratios (LERs), with values above 1.06. The correct use of a tracker on APV fields is crucial for optimizing agricultural yields and electricity production.
Název v anglickém jazyce
Radiation Limits the Yield Potential of Main Crops Under Selected Agrivoltaic Designs-A Case Study of a New Shading Simulation Method
Popis výsledku anglicky
Agrivoltaics (APVs) represent a growing technology in Europe that enables the co-location of energy and food production in the same field. Photosynthesis requires photosynthetic active radiation, which is reduced by the shadows cast on crops by APV panels. The design of the module rows, material, and field orientation significantly influences the radiation distribution on the ground. In this context, we introduce an innovative approach for the effective simulation of the shading effects of various APV designs. We performed an extensive sensitivity analysis of the photovoltaic (PV) geometry influence on the ground-incident radiation and crop growth of selected cultivars. Simulations (2013-2021) for three representative arable crops in eastern Austria (winter wheat, spring barley, and maize) and seven different APV designs that only limited to the shading effect showed that maize and spring barley experienced the greatest annual above-ground biomass and grain yield reduction (up to 25%), with significant differences between the APV design and the weather conditions. While spring barley had similar decreases within the years, maize was characterized by high variability. Winter wheat had only up to a 10% reduction due to shading and a reduced photosynthetic performance. Cold/humid/cloudy weather during the growing season had more negative yield effects under APVs than dry/hot periods, particularly for summer crops such as maize. The lowest grain yield decline was achieved for all three crops in the APV design in which the modules were oriented to the east at a height of 5 m and mounted on trackers with an inclination of +/-50 degrees. This scenario also resulted in the highest land equivalent ratios (LERs), with values above 1.06. The correct use of a tracker on APV fields is crucial for optimizing agricultural yields and electricity production.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004635" target="_blank" >EH22_008/0004635: AdAgriF - Pokročilé metody redukce emisí a sekvestrace skleníkových plynů v zemědělské a lesní krajině pro mitigaci změny klimatu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Agronomy
ISSN
2073-4395
e-ISSN
2073-4395
Svazek periodika
14
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
25
Strana od-do
2511
Kód UT WoS článku
001365743000001
EID výsledku v databázi Scopus
2-s2.0-85210157386