Effects of bark beetle disturbance and fuel types on fire radiative power and burn severity in the Bohemian-Saxon Switzerland
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F24%3A00605015" target="_blank" >RIV/86652079:_____/24:00605015 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/forestry/article/98/1/59/7688820?login=false" target="_blank" >https://academic.oup.com/forestry/article/98/1/59/7688820?login=false</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/forestry/cpae024" target="_blank" >10.1093/forestry/cpae024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of bark beetle disturbance and fuel types on fire radiative power and burn severity in the Bohemian-Saxon Switzerland
Popis výsledku v původním jazyce
Until recently, forest fires were considered a rare phenomenon in the temperate forests of Central Europe because of the moderate summer temperatures and the humid climate. However, many of those forests (monocultures of Picea abies, Norway Spruce) were affected by bark beetle infestations in the past years and recent fires such as that in the Bohemian-Saxon Switzerland in 2022 raised widespread debates about the effects of forest mortality on fuel accumulation and hence fire occurrence and severity. Here, we aim to investigate the association of fire radiative power (FRP) and burn severity with fuel types during the fire in Bohemian-Saxon Switzerland in 2022. We enhanced a European fuel type classification with a class for dead and dying spruce and mapped pre-fire fuel types using data on habitats, tree species, bark beetle disturbances and tree coverage. FRP was derived from observations of the Visible and Infrared Radiometer Suite (VIIRS) sensors. Burn severity was quantified by the differenced normalized burn ratio (dNBR) through pre- and postfire Landsat 8, 9, and Sentinel-2 images and was assessed in the field using the Composite Burn Index (CBI). We found the highest FRP at sites with dead spruce forests. Burn severity was moderate with high variability across all fuel types but highest severities occurred in dead spruce stands. The dNBR correlated positively with char height and the presence of torched trees (R = 0.48, P < .05), especially in dead spruce stands, likely due to the large amount of dry fine woody debris and the presence of initial natural regeneration. Our results demonstrate that surface fuel accumulation from past bark beetle disturbances resulted in more intense fires (higher FRP, char height and torching) and higher burn severity. The results highlight the need for improved cross-border fire risk management in Central European temperate forests that were previously not considered as fire-prone.
Název v anglickém jazyce
Effects of bark beetle disturbance and fuel types on fire radiative power and burn severity in the Bohemian-Saxon Switzerland
Popis výsledku anglicky
Until recently, forest fires were considered a rare phenomenon in the temperate forests of Central Europe because of the moderate summer temperatures and the humid climate. However, many of those forests (monocultures of Picea abies, Norway Spruce) were affected by bark beetle infestations in the past years and recent fires such as that in the Bohemian-Saxon Switzerland in 2022 raised widespread debates about the effects of forest mortality on fuel accumulation and hence fire occurrence and severity. Here, we aim to investigate the association of fire radiative power (FRP) and burn severity with fuel types during the fire in Bohemian-Saxon Switzerland in 2022. We enhanced a European fuel type classification with a class for dead and dying spruce and mapped pre-fire fuel types using data on habitats, tree species, bark beetle disturbances and tree coverage. FRP was derived from observations of the Visible and Infrared Radiometer Suite (VIIRS) sensors. Burn severity was quantified by the differenced normalized burn ratio (dNBR) through pre- and postfire Landsat 8, 9, and Sentinel-2 images and was assessed in the field using the Composite Burn Index (CBI). We found the highest FRP at sites with dead spruce forests. Burn severity was moderate with high variability across all fuel types but highest severities occurred in dead spruce stands. The dNBR correlated positively with char height and the presence of torched trees (R = 0.48, P < .05), especially in dead spruce stands, likely due to the large amount of dry fine woody debris and the presence of initial natural regeneration. Our results demonstrate that surface fuel accumulation from past bark beetle disturbances resulted in more intense fires (higher FRP, char height and torching) and higher burn severity. The results highlight the need for improved cross-border fire risk management in Central European temperate forests that were previously not considered as fire-prone.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
40102 - Forestry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forestry
ISSN
0015-752X
e-ISSN
1464-3626
Svazek periodika
98
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
59-70
Kód UT WoS článku
001243011600001
EID výsledku v databázi Scopus
2-s2.0-85199609181