Automated control and optimization of laser-driven ion acceleration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F23%3AN0000039" target="_blank" >RIV/CZ______:_____/23:N0000039 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/high-power-laser-science-and-engineering/article/automated-control-and-optimization-of-laserdriven-ion-acceleration/067E7D12CC7461E51E51B426BC7BDC40" target="_blank" >https://www.cambridge.org/core/journals/high-power-laser-science-and-engineering/article/automated-control-and-optimization-of-laserdriven-ion-acceleration/067E7D12CC7461E51E51B426BC7BDC40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/hpl.2023.23" target="_blank" >10.1017/hpl.2023.23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated control and optimization of laser-driven ion acceleration
Popis výsledku v původním jazyce
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
Název v anglickém jazyce
Automated control and optimization of laser-driven ion acceleration
Popis výsledku anglicky
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000789" target="_blank" >EF16_019/0000789: Pokročilý výzkum s využitím fotonů a částic vytvořených vysoce intenzivními lasery</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
High Power Laser Science and Engineering
ISSN
2095-4719
e-ISSN
2052-3289
Svazek periodika
11
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
9
Strana od-do
e35, PII S2095471923000233
Kód UT WoS článku
000988440000001
EID výsledku v databázi Scopus
2-s2.0-85151549946