Short-time large deviations of the spatially averaged height of a Kardar-Parisi-Zhang interface on a ring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F23%3AN0000060" target="_blank" >RIV/CZ______:_____/23:N0000060 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1742-5468/ad0a94" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-5468/ad0a94</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-5468/ad0a94" target="_blank" >10.1088/1742-5468/ad0a94</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Short-time large deviations of the spatially averaged height of a Kardar-Parisi-Zhang interface on a ring
Popis výsledku v původním jazyce
Using the optimal fluctuation method, we evaluate the short-time probability distribution P((H) over bar, L, t = T) of the spatially averaged height (H) over bar (1/L)(0)integral(L)h(x, t = T)dx of a one-dimensional interface h(x, t) governed by the Kardar-Parisi-Zhang equation partial derivative(t)h =nu partial derivative(2)(x)h+lambda/2 (partial derivative(x)h)(2) + root D xi (x, t) on a ring of length L. The process starts from a flat interface, h(x, t = 0) = 0. Both at lambda(H) over bar < 0 and at sufficiently small positive. lambda<(H)over bar> the optimal (that is, the least-action) path h(x, t) of the interface, conditioned on (H) over bar, is uniform in space, and the distribution P((H) over bar, L, T) is Gaussian. However, at sufficiently large. lambda(H) over bar < 0 the spatially uniform solution becomes sub-optimal and gives way to non-uniform optimal paths. We study these, and the resulting non-Gaussian distribution P(<(H)over bar>, L, T), analytically and numerically. The loss of optimality of the uniform solution occurs via a dynamical phase transition of either first or second order, depending on the rescaled system size l = L/root nu T, at a critical value (H) over bar = (H) over bar (c)(l). At large but finite l the transition is of first order. Remarkably, it becomes an 'accidental' second-order transition in the limit of l ->infinity, where a large-deviation behavior - ln P((H) over bar H, L, T) similar or equal to (L/T) f((H) over bar) (in the units lambda = nu = D = 1) is observed. At small l the transition is of second order, while at l = O(1) transitions of both types occur.
Název v anglickém jazyce
Short-time large deviations of the spatially averaged height of a Kardar-Parisi-Zhang interface on a ring
Popis výsledku anglicky
Using the optimal fluctuation method, we evaluate the short-time probability distribution P((H) over bar, L, t = T) of the spatially averaged height (H) over bar (1/L)(0)integral(L)h(x, t = T)dx of a one-dimensional interface h(x, t) governed by the Kardar-Parisi-Zhang equation partial derivative(t)h =nu partial derivative(2)(x)h+lambda/2 (partial derivative(x)h)(2) + root D xi (x, t) on a ring of length L. The process starts from a flat interface, h(x, t = 0) = 0. Both at lambda(H) over bar < 0 and at sufficiently small positive. lambda<(H)over bar> the optimal (that is, the least-action) path h(x, t) of the interface, conditioned on (H) over bar, is uniform in space, and the distribution P((H) over bar, L, T) is Gaussian. However, at sufficiently large. lambda(H) over bar < 0 the spatially uniform solution becomes sub-optimal and gives way to non-uniform optimal paths. We study these, and the resulting non-Gaussian distribution P(<(H)over bar>, L, T), analytically and numerically. The loss of optimality of the uniform solution occurs via a dynamical phase transition of either first or second order, depending on the rescaled system size l = L/root nu T, at a critical value (H) over bar = (H) over bar (c)(l). At large but finite l the transition is of first order. Remarkably, it becomes an 'accidental' second-order transition in the limit of l ->infinity, where a large-deviation behavior - ln P((H) over bar H, L, T) similar or equal to (L/T) f((H) over bar) (in the units lambda = nu = D = 1) is observed. At small l the transition is of second order, while at l = O(1) transitions of both types occur.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000789" target="_blank" >EF16_019/0000789: Pokročilý výzkum s využitím fotonů a částic vytvořených vysoce intenzivními lasery</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Statistical Mechanics - Theory and Experiment
ISSN
1742-5468
e-ISSN
1742-5468
Svazek periodika
2023
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
30
Strana od-do
123202 (1-30)
Kód UT WoS článku
001123037900001
EID výsledku v databázi Scopus
2-s2.0-85180359707