Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000023" target="_blank" >RIV/CZ______:_____/24:N0000023 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001299599100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001299599100001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adom.202401214" target="_blank" >10.1002/adom.202401214</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations
Popis výsledku v původním jazyce
Phase change materials (PCMs) have gained a tremendous interest as a means to actively tune nanophotonic devices through the large optical modulation produced by their amorphous to crystalline reversible transition. Recently, materials such as Sb2S3 emerged as particularly promising low loss PCMs, with both large refractive index modulations and transparency in the visible and near-infrared. Controlling the local and reversible phase transition in this material is of major importance for future applications, and an appealing method to do so is to exploit pulsed lasers. Yet, the physics and limits involved in the optical switching of Sb2S3 are not yet well understood. Here, the reversible laser-induced phase transition of Sb2S3 is investigated, focusing specifically on the mechanisms that drive the optically induced amorphization, with multi-physics considerations including the optical and thermal properties of the PCM and its environment. The laser energy threshold for reversibly changing the phase of the PCM is determined through both theoretical analysis and experimental investigation, not only between fully amorphous and crystalline states but also between partially recrystallized states. Then, the non-negligible impact of the material's polycrystallinity and anisotropy on the power thresholds for optical switching is revealed. Finally, the challenges related to laser amorphization of thick Sb2S3 layers are addressed, as well as strategies to overcome them. These results enable a qualitative and quantitative understanding of the physics behind the optically-induced reversible change of phase in Sb2S3 layers.
Název v anglickém jazyce
Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations
Popis výsledku anglicky
Phase change materials (PCMs) have gained a tremendous interest as a means to actively tune nanophotonic devices through the large optical modulation produced by their amorphous to crystalline reversible transition. Recently, materials such as Sb2S3 emerged as particularly promising low loss PCMs, with both large refractive index modulations and transparency in the visible and near-infrared. Controlling the local and reversible phase transition in this material is of major importance for future applications, and an appealing method to do so is to exploit pulsed lasers. Yet, the physics and limits involved in the optical switching of Sb2S3 are not yet well understood. Here, the reversible laser-induced phase transition of Sb2S3 is investigated, focusing specifically on the mechanisms that drive the optically induced amorphization, with multi-physics considerations including the optical and thermal properties of the PCM and its environment. The laser energy threshold for reversibly changing the phase of the PCM is determined through both theoretical analysis and experimental investigation, not only between fully amorphous and crystalline states but also between partially recrystallized states. Then, the non-negligible impact of the material's polycrystallinity and anisotropy on the power thresholds for optical switching is revealed. Finally, the challenges related to laser amorphization of thick Sb2S3 layers are addressed, as well as strategies to overcome them. These results enable a qualitative and quantitative understanding of the physics behind the optically-induced reversible change of phase in Sb2S3 layers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000789" target="_blank" >EF16_019/0000789: Pokročilý výzkum s využitím fotonů a částic vytvořených vysoce intenzivními lasery</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED OPTICAL MATERIALS
ISSN
2195-1071
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
2401214
Kód UT WoS článku
001299599100001
EID výsledku v databázi Scopus
2-s2.0-85202185644