Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000023" target="_blank" >RIV/CZ______:_____/24:N0000023 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001299599100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001299599100001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adom.202401214" target="_blank" >10.1002/adom.202401214</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations

  • Popis výsledku v původním jazyce

    Phase change materials (PCMs) have gained a tremendous interest as a means to actively tune nanophotonic devices through the large optical modulation produced by their amorphous to crystalline reversible transition. Recently, materials such as Sb2S3 emerged as particularly promising low loss PCMs, with both large refractive index modulations and transparency in the visible and near-infrared. Controlling the local and reversible phase transition in this material is of major importance for future applications, and an appealing method to do so is to exploit pulsed lasers. Yet, the physics and limits involved in the optical switching of Sb2S3 are not yet well understood. Here, the reversible laser-induced phase transition of Sb2S3 is investigated, focusing specifically on the mechanisms that drive the optically induced amorphization, with multi-physics considerations including the optical and thermal properties of the PCM and its environment. The laser energy threshold for reversibly changing the phase of the PCM is determined through both theoretical analysis and experimental investigation, not only between fully amorphous and crystalline states but also between partially recrystallized states. Then, the non-negligible impact of the material's polycrystallinity and anisotropy on the power thresholds for optical switching is revealed. Finally, the challenges related to laser amorphization of thick Sb2S3 layers are addressed, as well as strategies to overcome them. These results enable a qualitative and quantitative understanding of the physics behind the optically-induced reversible change of phase in Sb2S3 layers.

  • Název v anglickém jazyce

    Reversible single-pulse laser-induced phase change of SbS thin films: multi-physics modeling and experimental demonstrations

  • Popis výsledku anglicky

    Phase change materials (PCMs) have gained a tremendous interest as a means to actively tune nanophotonic devices through the large optical modulation produced by their amorphous to crystalline reversible transition. Recently, materials such as Sb2S3 emerged as particularly promising low loss PCMs, with both large refractive index modulations and transparency in the visible and near-infrared. Controlling the local and reversible phase transition in this material is of major importance for future applications, and an appealing method to do so is to exploit pulsed lasers. Yet, the physics and limits involved in the optical switching of Sb2S3 are not yet well understood. Here, the reversible laser-induced phase transition of Sb2S3 is investigated, focusing specifically on the mechanisms that drive the optically induced amorphization, with multi-physics considerations including the optical and thermal properties of the PCM and its environment. The laser energy threshold for reversibly changing the phase of the PCM is determined through both theoretical analysis and experimental investigation, not only between fully amorphous and crystalline states but also between partially recrystallized states. Then, the non-negligible impact of the material's polycrystallinity and anisotropy on the power thresholds for optical switching is revealed. Finally, the challenges related to laser amorphization of thick Sb2S3 layers are addressed, as well as strategies to overcome them. These results enable a qualitative and quantitative understanding of the physics behind the optically-induced reversible change of phase in Sb2S3 layers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000789" target="_blank" >EF16_019/0000789: Pokročilý výzkum s využitím fotonů a částic vytvořených vysoce intenzivními lasery</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCED OPTICAL MATERIALS

  • ISSN

    2195-1071

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    28

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    13

  • Strana od-do

    2401214

  • Kód UT WoS článku

    001299599100001

  • EID výsledku v databázi Scopus

    2-s2.0-85202185644