Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000032" target="_blank" >RIV/CZ______:_____/24:N0000032 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/CZ______:_____/24:N0000033
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001255089800005" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001255089800005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevResearch.6.023326" target="_blank" >10.1103/PhysRevResearch.6.023326</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
Popis výsledku v původním jazyce
Enhancing laser energy absorption with energy transfer to fast electrons is crucial for efficient laser-driven ion acceleration. In this work, we present an experimental demonstration of volumetric laser absorption using boron nitride nanotube (BNNT) targets with an average density of 51 of the solid density. We use a PW laser system operating at a pulse duration of 1.2 ps and an energy of 1.3 kJ, reaching intensities of 2 x 1019 W cm-2 on target with moderate nanosecond contrast (109), to generate energetic ion streams from a 250 mu m thick BNNT target. To characterize laser-accelerated ions, Thomson parabola spectrometers, CR-39 nuclear track detectors, and an electron spectrometer are employed. The results are compared to those achieved using flat targets made of polystyrene (PS) of the same thickness. The comparison reveals a 1.5-fold increase in proton maximum energy and a 2.5-fold increase in the maximum energy of heavy ions (C and N) when comparing the BNNT to PS. Moreover, the high-energy ion flux recorded at CR-39 is orders of magnitude higher for the BNNT after cutting off low-energy ions with Al filters. The enhanced ion acceleration is the result of a 2.3-fold increase in the electron temperature for BNNT, as measured by the electron spectrometer. These experimental findings are further validated through two-dimensional particle-in-cell simulations, which confirm the increase in electron temperature due to enhanced laser absorption ascribable to the low density and nanostructure of the BNNT target compared to the flat foil.
Název v anglickém jazyce
Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
Popis výsledku anglicky
Enhancing laser energy absorption with energy transfer to fast electrons is crucial for efficient laser-driven ion acceleration. In this work, we present an experimental demonstration of volumetric laser absorption using boron nitride nanotube (BNNT) targets with an average density of 51 of the solid density. We use a PW laser system operating at a pulse duration of 1.2 ps and an energy of 1.3 kJ, reaching intensities of 2 x 1019 W cm-2 on target with moderate nanosecond contrast (109), to generate energetic ion streams from a 250 mu m thick BNNT target. To characterize laser-accelerated ions, Thomson parabola spectrometers, CR-39 nuclear track detectors, and an electron spectrometer are employed. The results are compared to those achieved using flat targets made of polystyrene (PS) of the same thickness. The comparison reveals a 1.5-fold increase in proton maximum energy and a 2.5-fold increase in the maximum energy of heavy ions (C and N) when comparing the BNNT to PS. Moreover, the high-energy ion flux recorded at CR-39 is orders of magnitude higher for the BNNT after cutting off low-energy ions with Al filters. The enhanced ion acceleration is the result of a 2.3-fold increase in the electron temperature for BNNT, as measured by the electron spectrometer. These experimental findings are further validated through two-dimensional particle-in-cell simulations, which confirm the increase in electron temperature due to enhanced laser absorption ascribable to the low density and nanostructure of the BNNT target compared to the flat foil.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW RESEARCH
ISSN
—
e-ISSN
2643-1564
Svazek periodika
6
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
23326 (1-8)
Kód UT WoS článku
001255089800005
EID výsledku v databázi Scopus
2-s2.0-85196971381