Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unveiling Mechanism of Temperature‐Dependent Self‐Trapped Exciton Emission in 1D Hybrid Organic–Inorganic Tin Halide for Advanced Thermography

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000040" target="_blank" >RIV/CZ______:_____/24:N0000040 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402061" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402061</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adom.202402061" target="_blank" >10.1002/adom.202402061</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unveiling Mechanism of Temperature‐Dependent Self‐Trapped Exciton Emission in 1D Hybrid Organic–Inorganic Tin Halide for Advanced Thermography

  • Popis výsledku v původním jazyce

    Lead-free hybrid metal halide phosphors/crystals showing self-trapped exciton (STE) emission have been recently explored for thermography due to the strong temperature dependence of their photoluminescence (PL) lifetime (tau). However, realizing high-spatial-resolution thermography using polycrystalline powders or crystals presents a challenge. Moreover, the underlying mechanism of temperature-dependent STE remains elusive. Herein, a homogeneous 1D ODASn2I6 (ODA, 1,8-octanediamine) nm-scale thin film exhibiting efficient STE emission is investigated. The PL decay shows a strong temperature dependence from 275 K (tau approximate to 1.31 mu s) to 350 K (tau approximate to 0.65 mu s) yielding a thermal sensitivity of 0.014 K-1. By employing temperature-dependent transient absorption spectroscopy, detailed information is obtained about the relaxation processes prior to the STE formation. Simultaneous analyses of steady-state and time-resolved spectroscopies lead to a self-consistent model where the thermally activated phonon-assisted nonradiative pathway explains the temperature dependence of the PL lifetime via a conical intersection between the ground state and STE potential energy surfaces. Finally, a discernible 50 ns variation in PL lifetimes across different heated regimes over a distance of 1.15 mm is successfully demonstrated with fluorescence lifetime imaging microscopy, underscoring the substantial potential of ODASn2I6 thin film for high-spatial-resolution thermography. This work demonstrates a 1D ODASn2I6 thin film showing strongly thermal-quenched self-trapped exciton emission (STE) above 275 K. By using ultrafast spectroscopy, the temperature-dependent formation and relaxation mechanism of such STE is unveiled. In addition, fluorescence lifetime imaging measurements illustrate that ODASn2I6 thin film with a specific sensitivity of 0.014 K-1 is a significant potential candidate for high-spatial-resolution thermography. image

  • Název v anglickém jazyce

    Unveiling Mechanism of Temperature‐Dependent Self‐Trapped Exciton Emission in 1D Hybrid Organic–Inorganic Tin Halide for Advanced Thermography

  • Popis výsledku anglicky

    Lead-free hybrid metal halide phosphors/crystals showing self-trapped exciton (STE) emission have been recently explored for thermography due to the strong temperature dependence of their photoluminescence (PL) lifetime (tau). However, realizing high-spatial-resolution thermography using polycrystalline powders or crystals presents a challenge. Moreover, the underlying mechanism of temperature-dependent STE remains elusive. Herein, a homogeneous 1D ODASn2I6 (ODA, 1,8-octanediamine) nm-scale thin film exhibiting efficient STE emission is investigated. The PL decay shows a strong temperature dependence from 275 K (tau approximate to 1.31 mu s) to 350 K (tau approximate to 0.65 mu s) yielding a thermal sensitivity of 0.014 K-1. By employing temperature-dependent transient absorption spectroscopy, detailed information is obtained about the relaxation processes prior to the STE formation. Simultaneous analyses of steady-state and time-resolved spectroscopies lead to a self-consistent model where the thermally activated phonon-assisted nonradiative pathway explains the temperature dependence of the PL lifetime via a conical intersection between the ground state and STE potential energy surfaces. Finally, a discernible 50 ns variation in PL lifetimes across different heated regimes over a distance of 1.15 mm is successfully demonstrated with fluorescence lifetime imaging microscopy, underscoring the substantial potential of ODASn2I6 thin film for high-spatial-resolution thermography. This work demonstrates a 1D ODASn2I6 thin film showing strongly thermal-quenched self-trapped exciton emission (STE) above 275 K. By using ultrafast spectroscopy, the temperature-dependent formation and relaxation mechanism of such STE is unveiled. In addition, fluorescence lifetime imaging measurements illustrate that ODASn2I6 thin film with a specific sensitivity of 0.014 K-1 is a significant potential candidate for high-spatial-resolution thermography. image

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM21-09692M" target="_blank" >GM21-09692M: Stanovení kvantových limitů v biomolekulách pomocí entanglovaných fotonů generovaných z navázaného kofaktorů, modelováno na OCP proteinu.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advanced Optical Materials

  • ISSN

    2195-1071

  • e-ISSN

  • Svazek periodika

    2024

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

    2402061

  • Kód UT WoS článku

    001337440600001

  • EID výsledku v databázi Scopus

    2-s2.0-85206929562