Unveiling Mechanism of Temperature‐Dependent Self‐Trapped Exciton Emission in 1D Hybrid Organic–Inorganic Tin Halide for Advanced Thermography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2FCZ______%3A_____%2F24%3AN0000040" target="_blank" >RIV/CZ______:_____/24:N0000040 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402061" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402061</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adom.202402061" target="_blank" >10.1002/adom.202402061</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unveiling Mechanism of Temperature‐Dependent Self‐Trapped Exciton Emission in 1D Hybrid Organic–Inorganic Tin Halide for Advanced Thermography
Popis výsledku v původním jazyce
Lead-free hybrid metal halide phosphors/crystals showing self-trapped exciton (STE) emission have been recently explored for thermography due to the strong temperature dependence of their photoluminescence (PL) lifetime (tau). However, realizing high-spatial-resolution thermography using polycrystalline powders or crystals presents a challenge. Moreover, the underlying mechanism of temperature-dependent STE remains elusive. Herein, a homogeneous 1D ODASn2I6 (ODA, 1,8-octanediamine) nm-scale thin film exhibiting efficient STE emission is investigated. The PL decay shows a strong temperature dependence from 275 K (tau approximate to 1.31 mu s) to 350 K (tau approximate to 0.65 mu s) yielding a thermal sensitivity of 0.014 K-1. By employing temperature-dependent transient absorption spectroscopy, detailed information is obtained about the relaxation processes prior to the STE formation. Simultaneous analyses of steady-state and time-resolved spectroscopies lead to a self-consistent model where the thermally activated phonon-assisted nonradiative pathway explains the temperature dependence of the PL lifetime via a conical intersection between the ground state and STE potential energy surfaces. Finally, a discernible 50 ns variation in PL lifetimes across different heated regimes over a distance of 1.15 mm is successfully demonstrated with fluorescence lifetime imaging microscopy, underscoring the substantial potential of ODASn2I6 thin film for high-spatial-resolution thermography. This work demonstrates a 1D ODASn2I6 thin film showing strongly thermal-quenched self-trapped exciton emission (STE) above 275 K. By using ultrafast spectroscopy, the temperature-dependent formation and relaxation mechanism of such STE is unveiled. In addition, fluorescence lifetime imaging measurements illustrate that ODASn2I6 thin film with a specific sensitivity of 0.014 K-1 is a significant potential candidate for high-spatial-resolution thermography. image
Název v anglickém jazyce
Unveiling Mechanism of Temperature‐Dependent Self‐Trapped Exciton Emission in 1D Hybrid Organic–Inorganic Tin Halide for Advanced Thermography
Popis výsledku anglicky
Lead-free hybrid metal halide phosphors/crystals showing self-trapped exciton (STE) emission have been recently explored for thermography due to the strong temperature dependence of their photoluminescence (PL) lifetime (tau). However, realizing high-spatial-resolution thermography using polycrystalline powders or crystals presents a challenge. Moreover, the underlying mechanism of temperature-dependent STE remains elusive. Herein, a homogeneous 1D ODASn2I6 (ODA, 1,8-octanediamine) nm-scale thin film exhibiting efficient STE emission is investigated. The PL decay shows a strong temperature dependence from 275 K (tau approximate to 1.31 mu s) to 350 K (tau approximate to 0.65 mu s) yielding a thermal sensitivity of 0.014 K-1. By employing temperature-dependent transient absorption spectroscopy, detailed information is obtained about the relaxation processes prior to the STE formation. Simultaneous analyses of steady-state and time-resolved spectroscopies lead to a self-consistent model where the thermally activated phonon-assisted nonradiative pathway explains the temperature dependence of the PL lifetime via a conical intersection between the ground state and STE potential energy surfaces. Finally, a discernible 50 ns variation in PL lifetimes across different heated regimes over a distance of 1.15 mm is successfully demonstrated with fluorescence lifetime imaging microscopy, underscoring the substantial potential of ODASn2I6 thin film for high-spatial-resolution thermography. This work demonstrates a 1D ODASn2I6 thin film showing strongly thermal-quenched self-trapped exciton emission (STE) above 275 K. By using ultrafast spectroscopy, the temperature-dependent formation and relaxation mechanism of such STE is unveiled. In addition, fluorescence lifetime imaging measurements illustrate that ODASn2I6 thin film with a specific sensitivity of 0.014 K-1 is a significant potential candidate for high-spatial-resolution thermography. image
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-09692M" target="_blank" >GM21-09692M: Stanovení kvantových limitů v biomolekulách pomocí entanglovaných fotonů generovaných z navázaného kofaktorů, modelováno na OCP proteinu.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Optical Materials
ISSN
2195-1071
e-ISSN
—
Svazek periodika
2024
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
2402061
Kód UT WoS článku
001337440600001
EID výsledku v databázi Scopus
2-s2.0-85206929562