All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Antimicrobial effect of endolysins LYSDERM-S and LYSDERM-T1 and endolysin-ubiquitin combination on methicillin-resistant Staphylococcus aureus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00159816%3A_____%2F23%3A00078674" target="_blank" >RIV/00159816:_____/23:00078674 - isvavai.cz</a>

  • Alternative codes found

    RIV/00027162:_____/23:N0000008 RIV/00216224:14110/23:00134618

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s11756-022-01282-6" target="_blank" >https://link.springer.com/article/10.1007/s11756-022-01282-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11756-022-01282-6" target="_blank" >10.1007/s11756-022-01282-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Antimicrobial effect of endolysins LYSDERM-S and LYSDERM-T1 and endolysin-ubiquitin combination on methicillin-resistant Staphylococcus aureus

  • Original language description

    Bacterial resistance is a major issue in the modern world, and Staphylococcus aureus is one of these well-known multi-resistant species. Staphylococcal infections are one of the leading causes of infection in humans and are becoming more challenging to treat by conventional methods. Endolysins, a novel class of antibacterial agents, are bacteriophage-encoded lytic enzymes capable of degrading peptidoglycan and thus able to kill bacteria. This study aimed to study endolysin LYSDERM-S (a variant of endolysin LysF1 optimized for heterologous expression in E. coli) and newly prepared thermally stabilized endolysin LYSDERM-T1 (with a mutation in the CHAP domain) both with (LYSDERM-US, LYSDERM-UT1) and without fused ubiquitin and determine its role in protein expression and antibacterial activity. The results showed that fused endolysin-ubiquitin proteins did not exceed the antimicrobial effect of endolysins alone, but cleaved endolysin-ubiquitin proteins possessed longer lasting antimicrobial effect than endolysin alone. The biobetter endolysin LYSDERM-T1 with higher thermal stability showed a prolonged antimicrobial effect. Further, we showed that ubiquitin alone possesses antimicrobial properties. Minimal inhibitory and bactericidal concentrations (MIC and MBC) were assessed and confirmed that ubiquitin is able to increase the antimicrobial potential of endolysins. Biobetter endolysins or endolysin-ubiquitin combinations could serve as an alternative to well-established antimicrobial therapy for methicillin-resistant S. aureus infections.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10600 - Biological sciences

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biologia

  • ISSN

    0006-3088

  • e-ISSN

    1336-9563

  • Volume of the periodical

    78

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    8

  • Pages from-to

    601-608

  • UT code for WoS article

    000894986000002

  • EID of the result in the Scopus database