The interconnection between cytokeratin and cell membrane-bound beta-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10409396" target="_blank" >RIV/00216208:11310/19:10409396 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X.vClEdFe6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X.vClEdFe6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1242/bio.043950" target="_blank" >10.1242/bio.043950</a>
Alternative languages
Result language
angličtina
Original language name
The interconnection between cytokeratin and cell membrane-bound beta-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes
Original language description
Sertoli cells (SCs) play a central role in the determination of male sex during embryogenesis and spermatogenesis in adulthood. Failure in SC development is responsible for male sterility and testicular cancer. Before the onset of puberty, SCs are immature and differ considerably from mature cells in post-pubertal individuals regarding their morphology and biochemical activity. The major intermediate filament (IF) in mature SCs is vimentin, anchoring germ cells to the seminiferous epithelium. The collapse of vimentin has resulted in the disintegration of seminiferous epithelium and subsequent germ cell apoptosis. However, another IF, cytokeratin (CK) is observed only transiently in immature SCs in many species. Nevertheless, its function in SC differentiation is poorly understood. We examined the interconnection between CK and cell junctions using membrane beta-catenin as a marker during testicular development in the Xenopus tropicalis model. Immunohistochemistry on juvenile (5 months old) testes revealed co-expression of CK, membrane beta-catenin and E-cadherin. Adult (3-year-old males) samples confirmed only E-cadherin expression; CK and beta-catenin were lost. To study the interconnection between CK and beta-catenin-based cell junctions, the culture of immature SCs (here called XtiSCs) was employed. Suppression of CK by acrylamide in XtiSCs led to breakdown of membrane-bound beta-catenin but not F-actin and beta-tubulin or cell-adhesion proteins (focal adhesion kinase and integrin (31). In contrast to the obvious dependence of membrane beta-catenin on CK stability, the detachment of beta-catenin from the plasma membrane via uncoupling of cadherins by Ca2+ chelator EGTA had no effect on CK integrity. Interestingly, CHIR99021, a GSK3 inhibitor, also suppressed the CK network, resulting in the inhibition of XtiSCs cell-to-cell contacts and testicular development in juvenile frogs. This study suggests a novel role of CK in the retention of beta-catenin-based junctions in immature SCs, and thus provides structural support for seminiferous tubule formation and germ cell development.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10605 - Developmental biology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biology Open [online]
ISSN
2046-6390
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
bio043950
UT code for WoS article
000506171400005
EID of the result in the Scopus database
—