A note on extremal Mappings of finite distortion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00206018" target="_blank" >RIV/00216208:11320/05:00206018 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on extremal Mappings of finite distortion
Original language description
Let $Omega$ be a convex planar domain and $f_circ in {mathcal F}={mathcal F}(Omega , Omega^prime)$ where $mathcal F$ is a class of $W^{1,1}$ homeomorphisms of finite distortion. We show that the minimization problem begin{equation} min_{fin {mathcal F}} int_Omega {mathbb K}, (x,f), dx , ; ; ; f=f_circ mbox{ on } partial Omega end{equation} has a unique solution and that the extremal map is a ${mathscr C}^infty$-diffeomorphism whose inverse is harmonic in $Omega^prime$.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Research Letters
ISSN
1073-2780
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
2-3
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—