Cyclic colorings of plane graphs with independent faces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10125709" target="_blank" >RIV/00216208:11320/12:10125709 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ejc.2011.09.011" target="_blank" >http://dx.doi.org/10.1016/j.ejc.2011.09.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2011.09.011" target="_blank" >10.1016/j.ejc.2011.09.011</a>
Alternative languages
Result language
angličtina
Original language name
Cyclic colorings of plane graphs with independent faces
Original language description
We show that every planar graph with vertex disjoint faces of size four or more has a vertex coloring with D+1 colors, where is the maximum face size, such that no face is incident with two vertices of the same color.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
294-301
UT code for WoS article
000299858000003
EID of the result in the Scopus database
—