THE PERFECT 2-COLORINGS OF INFINITE CIRCULANT GRAPHS WITH A CONTINUOUS SET OF ODD DISTANCES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00382602" target="_blank" >RIV/68407700:21340/20:00382602 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.33048/semi.2020.17.038" target="_blank" >https://doi.org/10.33048/semi.2020.17.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.33048/semi.2020.17.038" target="_blank" >10.33048/semi.2020.17.038</a>
Alternative languages
Result language
angličtina
Original language name
THE PERFECT 2-COLORINGS OF INFINITE CIRCULANT GRAPHS WITH A CONTINUOUS SET OF ODD DISTANCES
Original language description
A vertex coloring of a given simple graph G = (V, E) with k colors (k-coloring) is a map from its vertex set to the set of integers {1, 2, 3, ... , k}. A coloring is called perfect if the multiset of colors appearing on the neighbours of any vertex depends only on the color of the vertex. We consider perfect colorings of Cayley graphs of the additive group of integers with generating set {1, -1, 3, -3,5, -5, ... , 2n-1, 1 - 2n} for a positive integer n. We enumerate perfect 2-colorings of the graphs under consideration and state the conjecture generalizing the main result to an arbitrary number of colors.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Siberian Electronic Mathematical Reports
ISSN
1813-3304
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
April
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
14
Pages from-to
590-603
UT code for WoS article
000529942000001
EID of the result in the Scopus database
2-s2.0-85099242569