Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128842" target="_blank" >RIV/00216208:11320/12:10128842 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/num.20668" target="_blank" >http://dx.doi.org/10.1002/num.20668</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/num.20668" target="_blank" >10.1002/num.20668</a>
Alternative languages
Result language
angličtina
Original language name
Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons
Original language description
Error estimates for DGFE solutions are well investigated if one assumes that the exact solution is sufficiently regular. In this article, we consider a Dirichlet and a mixed boundary value problem for a linear elliptic equation in a polygon. It is well known that the first derivatives of the solutions develop singularities near reentrant corner points or points where the boundary conditions change. On the basis of the regularity results formulated in Sobolev-Slobodetskii spaces and weighted spaces of Kondratiev type, we prove error estimates of higher order for DGFE solutions using a suitable graded mesh refinement near boundary singular points. The main tools are as follows: regularity investigation for the exact solution relying on general results for elliptic boundary value problems, error analysis for the interpolation in Sobolev-Slobodetskii spaces, and error estimates for DGFE solutions on special graded refined meshes combined with estimates in weighted Sobolev spaces. Our main
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Methods for Partial Differential Equations
ISSN
0749-159X
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
1124-1151
UT code for WoS article
000303052000002
EID of the result in the Scopus database
—