All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128842" target="_blank" >RIV/00216208:11320/12:10128842 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/num.20668" target="_blank" >http://dx.doi.org/10.1002/num.20668</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/num.20668" target="_blank" >10.1002/num.20668</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons

  • Original language description

    Error estimates for DGFE solutions are well investigated if one assumes that the exact solution is sufficiently regular. In this article, we consider a Dirichlet and a mixed boundary value problem for a linear elliptic equation in a polygon. It is well known that the first derivatives of the solutions develop singularities near reentrant corner points or points where the boundary conditions change. On the basis of the regularity results formulated in Sobolev-Slobodetskii spaces and weighted spaces of Kondratiev type, we prove error estimates of higher order for DGFE solutions using a suitable graded mesh refinement near boundary singular points. The main tools are as follows: regularity investigation for the exact solution relying on general results for elliptic boundary value problems, error analysis for the interpolation in Sobolev-Slobodetskii spaces, and error estimates for DGFE solutions on special graded refined meshes combined with estimates in weighted Sobolev spaces. Our main

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerical Methods for Partial Differential Equations

  • ISSN

    0749-159X

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    1124-1151

  • UT code for WoS article

    000303052000002

  • EID of the result in the Scopus database