Some results on monotone metric spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10285516" target="_blank" >RIV/00216208:11320/14:10285516 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21110/14:00242135
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2013.12.042" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2013.12.042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2013.12.042" target="_blank" >10.1016/j.jmaa.2013.12.042</a>
Alternative languages
Result language
angličtina
Original language name
Some results on monotone metric spaces
Original language description
We present some new results on monotone metric spaces. We prove that every bounded 1-monotone metric space in R-d has a finite 1-dimensional Hausdorff measure. As a consequence we obtain that each continuous bounded curve in R-d has a finite length if and only if it can be written as a finite sum of 1-monotone continuous bounded curves. Next we construct a continuous function f such that M has a zero Lebesgue measure provided the graph(f vertical bar M) is a monotone set in the plane. We finally construct a differentiable function with a monotone graph and unbounded variation. (C) 2013 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0383" target="_blank" >GA201/08/0383: Function Spaces, Weighted Inequalities and Interpolation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
413
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
999-1016
UT code for WoS article
000331344600032
EID of the result in the Scopus database
—