Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10294719" target="_blank" >RIV/00216208:11320/15:10294719 - isvavai.cz</a>
Result on the web
<a href="http://www.jcheminf.com/content/7/1/12/" target="_blank" >http://www.jcheminf.com/content/7/1/12/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13321-015-0059-5" target="_blank" >10.1186/s13321-015-0059-5</a>
Alternative languages
Result language
angličtina
Original language name
Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features
Original language description
Background Protein-ligand binding site prediction from a 3D protein structure plays a pivotal role in rational drug design and can be helpful in drug side-effects prediction or elucidation of protein function. Embedded within the binding site detection problem is the problem of pocket ranking - how to score and sort candidate pockets so that the best scored predictions correspond to true ligand binding sites. Although there exist multiple pocket detection algorithms, they mostly employ a fairly simple ranking function leading to sub-optimal prediction results. Results We have developed a new pocket scoring approach (named PRANK) that prioritizes putative pockets according to their probability to bind a ligand. The method first carefully selects pocketpoints and labels them by physico-chemical characteristics of their local neighborhood. Random Forests classifier is subsequently applied to assign a ligandability score to each of the selected pocket point. The ligandability scores are f
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP14-29032P" target="_blank" >GP14-29032P: Efficient chemical space exploration using multi-objective optimization</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Cheminformatics
ISSN
1758-2946
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
1-13
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-84928563231