All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploration of protein sequence embeddings for protein-ligand binding site detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455486" target="_blank" >RIV/00216208:11320/22:10455486 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/BIBM55620.2022.9995025" target="_blank" >https://doi.org/10.1109/BIBM55620.2022.9995025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/BIBM55620.2022.9995025" target="_blank" >10.1109/BIBM55620.2022.9995025</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploration of protein sequence embeddings for protein-ligand binding site detection

  • Original language description

    Detection of protein-ligand binding sites is essential not only for protein function investigation but also in fields such as drug discovery or bioengineering. In this paper, we show that the recently-developed pre-trained language models can be used for protein-ligand binding site prediction. Specifically, we present a neural network architecture where inputs correspond to amino acids embeddings obtained from a protein language model. We show that increasing complexity of the language model improves the predictive performance of the method, eventually leading to results comparable to or surpassing state-of-the-art approaches. Unlike the existing methods, the presented approach does not require time-consuming computation of evolutionary information, resulting in faster running times.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-21696S" target="_blank" >GA22-21696S: Deep Visual Representations of Unstructured Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

  • ISBN

    978-1-66546-819-0

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    3356-3361

  • Publisher name

    IEEE

  • Place of publication

    USA

  • Event location

    Las Vegas, NV, USA

  • Event date

    Dec 6, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article