Cryptic binding site prediction with protein language models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476944" target="_blank" >RIV/00216208:11320/23:10476944 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11310/23:10476944
Result on the web
<a href="https://doi.org/10.1109/BIBM58861.2023.10385497" target="_blank" >https://doi.org/10.1109/BIBM58861.2023.10385497</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/BIBM58861.2023.10385497" target="_blank" >10.1109/BIBM58861.2023.10385497</a>
Alternative languages
Result language
angličtina
Original language name
Cryptic binding site prediction with protein language models
Original language description
Structure-based identification of protein-ligand binding sites plays a crucial role in the initial stages of rational drug discovery pipelines. As machine learning methods are increasingly integrated into the process, a significant challenge arises while training these methods, as labeled data are typically derived from ligand-bound structures. Consequently, these methods struggle to detect binding sites within proteins where the binding site is concealed in the absence of a bound ligand. Here, we explore the possibility of harnessing protein language models to address this issue and compare their performance against state-of-the-art methods, both those specialized in the cryptic binding site (CBS) detection and those that are not. We show that applying pre-trained protein-language models in a relatively straightforward manner enables us to surpass the state-of-the-art of CBS prediction.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA23-07349S" target="_blank" >GA23-07349S: Targeting protein cryptic binding sites with machine learning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
ISBN
979-8-3503-3748-8
ISSN
—
e-ISSN
2156-1133
Number of pages
3
Pages from-to
4935-4937
Publisher name
IEEE
Place of publication
USA
Event location
Istanbul, Turkiye
Event date
Dec 5, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—