Conformal Galilei algebras, symmetric polynomials and singular vectors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10367257" target="_blank" >RIV/00216208:11320/18:10367257 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s11005-017-0997-0" target="_blank" >https://link.springer.com/article/10.1007/s11005-017-0997-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11005-017-0997-0" target="_blank" >10.1007/s11005-017-0997-0</a>
Alternative languages
Result language
angličtina
Original language name
Conformal Galilei algebras, symmetric polynomials and singular vectors
Original language description
We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga(d, C) with d = 1 for any integer value ELEMENT OF N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Letters in Mathematical Physics
ISSN
0377-9017
e-ISSN
—
Volume of the periodical
2017
Issue of the periodical within the volume
Volume 108, Issue 1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
44
Pages from-to
1-44
UT code for WoS article
000419165600001
EID of the result in the Scopus database
2-s2.0-85029449791