Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10406386" target="_blank" >RIV/00216208:11320/19:10406386 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h1zOlwjE_9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h1zOlwjE_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10543-019-00763-6" target="_blank" >10.1007/s10543-019-00763-6</a>
Alternative languages
Result language
angličtina
Original language name
Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices
Original language description
This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, a priori decay bounds for the entries of functions of banded non-Hermitian matrices will be exploited, using Faber polynomial approximation. Numerical experiments illustrate the quality of the results.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BIT Numerical Mathematics
ISSN
0006-3835
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
969-986
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85068047550