All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10406386" target="_blank" >RIV/00216208:11320/19:10406386 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h1zOlwjE_9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=h1zOlwjE_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10543-019-00763-6" target="_blank" >10.1007/s10543-019-00763-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

  • Original language description

    This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, a priori decay bounds for the entries of functions of banded non-Hermitian matrices will be exploited, using Faber polynomial approximation. Numerical experiments illustrate the quality of the results.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BIT Numerical Mathematics

  • ISSN

    0006-3835

  • e-ISSN

  • Volume of the periodical

    59

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    18

  • Pages from-to

    969-986

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85068047550