All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On difference graphs and the local dimension of posets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10422322" target="_blank" >RIV/00216208:11320/20:10422322 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0nO8c8IpPZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0nO8c8IpPZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2019.103074" target="_blank" >10.1016/j.ejc.2019.103074</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On difference graphs and the local dimension of posets

  • Original language description

    The dimension of a partially-ordered set (poset), introduced by Dushnik and Miller (1941), has been studied extensively in the literature. Recently, Ueckerdt (2016) proposed a variation called local dimension which makes use of partial linear extensions. While local dimension is bounded above by dimension, they can be arbitrarily far apart as the dimension of the standard example is n while its local dimension is only 3. Hiraguchi (1955) proved that the maximum dimension of a poset of order n is n/2. However, we find a very different result for local dimension, proving a bound of Theta(n/log n). This follows from connections with covering graphs using difference graphs which are bipartite graphs whose vertices in a single class have nested neighborhoods. We also prove that the local dimension of the n-dimensional Boolean lattice is Omega(n/log n) and make progress toward resolving an analogue of the removable pair conjecture for local dimension. (C) 2019 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    86

  • Issue of the periodical within the volume

    Květen

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    103074

  • UT code for WoS article

    000527928900004

  • EID of the result in the Scopus database

    2-s2.0-85077120980