All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALIZATIONS OF COMMUTATIVE RINGS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10436809" target="_blank" >RIV/00216208:11320/21:10436809 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X_C4NhGqYv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=X_C4NhGqYv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/qmath/haaa041" target="_blank" >10.1093/qmath/haaa041</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALIZATIONS OF COMMUTATIVE RINGS

  • Original language description

    We study different types of localizations of a commutative noetherian ring. More precisely, we provide criteria to decide: (a) if a given flat ring epimorphism is a universal localization in the sense of Cohn and Schofield; and (b) when such universal localizations are classical rings of fractions. In order to find such criteria, we use the theory of support and we analyse the specialization closed subset associated to a flat ring epimorphism. In case the underlying ring is locally factorial or of Krull dimension one, we show that all flat ring epimorphisms are universal localizations. Moreover, it turns out that an answer to the question of when universal localizations are classical depends on the structure of the Picard group. We furthermore discuss the case of normal rings, for which the divisor class group plays an essential role to decide if a given flat ring epimorphism is a universal localization. Finally, we explore several (counter)examples which highlight the necessity of our assumptions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Quarterly Journal of Mathematics

  • ISSN

    0033-5606

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    71

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    32

  • Pages from-to

    1489-1520

  • UT code for WoS article

    000600666500013

  • EID of the result in the Scopus database

    2-s2.0-85100012681