Universal quadratic forms and Dedekind zeta functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489821" target="_blank" >RIV/00216208:11320/24:10489821 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5nVcYNx1l-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5nVcYNx1l-</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S1793042124500908" target="_blank" >10.1142/S1793042124500908</a>
Alternative languages
Result language
angličtina
Original language name
Universal quadratic forms and Dedekind zeta functions
Original language description
We study universal quadratic forms over totally real number fields using Dedekind zeta functions. In particular, we prove an explicit lower bound for the rank of universal quadratic forms over a given number field K, under the assumption that the codifferent of K is generated by a totally positive element. Motivated by a possible path to remove that assumption, we also investigate the smallest number of generators for the positive part of ideals in totally real numbers fields.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GM21-00420M" target="_blank" >GM21-00420M: Universal Quadratic Forms and Class Numbers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Number Theory
ISSN
1793-0421
e-ISSN
1793-7310
Volume of the periodical
20
Issue of the periodical within the volume
7
Country of publishing house
SG - SINGAPORE
Number of pages
12
Pages from-to
—
UT code for WoS article
001271831000004
EID of the result in the Scopus database
2-s2.0-85195827636