All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Universal quadratic forms and Northcott property of infinite number fields

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489841" target="_blank" >RIV/00216208:11320/24:10489841 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KtGj1EzxrV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KtGj1EzxrV</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/jlms.70022" target="_blank" >10.1112/jlms.70022</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Universal quadratic forms and Northcott property of infinite number fields

  • Original language description

    We show that if a universal quadratic form exists over an infinite degree, totally real extension of the field of rationals Q$mathbb {Q}$, then the set of totally positive integers in the extension does not have the Northcott property. In particular, this implies that no universal form exists over the compositum of all totally real Galois fields of a fixed prime degree over Q$mathbb {Q}$. Further, by considering the existence of infinitely many square classes of totally positive units, we show that no classical universal form exists over the compositum of all such fields of degree 3d$3d$ (for each fixed odd integer d$d$).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of the London Mathematical Society

  • ISSN

    0024-6107

  • e-ISSN

    1469-7750

  • Volume of the periodical

    110

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    e70022

  • UT code for WoS article

    001351918100003

  • EID of the result in the Scopus database

    2-s2.0-85208226477