Universal quadratic forms and Northcott property of infinite number fields
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489841" target="_blank" >RIV/00216208:11320/24:10489841 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KtGj1EzxrV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KtGj1EzxrV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.70022" target="_blank" >10.1112/jlms.70022</a>
Alternative languages
Result language
angličtina
Original language name
Universal quadratic forms and Northcott property of infinite number fields
Original language description
We show that if a universal quadratic form exists over an infinite degree, totally real extension of the field of rationals Q$mathbb {Q}$, then the set of totally positive integers in the extension does not have the Northcott property. In particular, this implies that no universal form exists over the compositum of all totally real Galois fields of a fixed prime degree over Q$mathbb {Q}$. Further, by considering the existence of infinitely many square classes of totally positive units, we show that no classical universal form exists over the compositum of all such fields of degree 3d$3d$ (for each fixed odd integer d$d$).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
110
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
e70022
UT code for WoS article
001351918100003
EID of the result in the Scopus database
2-s2.0-85208226477