Higher order valued reduction theorems for classical connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F05%3A00012438" target="_blank" >RIV/00216224:14310/05:00012438 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Higher order valued reduction theorems for classical connections
Original language description
We generalize reduction theorems for classical connections to operators with values in $k$-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F02%2F0225" target="_blank" >GA201/02/0225: Prolongation of geometric structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Central European Journal of Mathematics
ISSN
1644-3616
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
15
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—