General covariant derivatives for general connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00049771" target="_blank" >RIV/00216224:14310/11:00049771 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.difgeo.2011.04.016" target="_blank" >http://dx.doi.org/10.1016/j.difgeo.2011.04.016</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.difgeo.2011.04.016" target="_blank" >10.1016/j.difgeo.2011.04.016</a>
Alternative languages
Result language
angličtina
Original language name
General covariant derivatives for general connections
Original language description
In this paper we introduce the general covariant derivatives of vertical-valued tensor fields with respect to a general connection on a fibered manifold and a classical connection on the base. We prove that the general covariant derivatives satisfy the general Ricci and the general Bianchi identities.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Differential Geometry and its Applications
ISSN
0926-2245
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
—
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
"S116"-"S124"
UT code for WoS article
000295198100017
EID of the result in the Scopus database
—