Nonholonomic mechanics: A practical application of the geometrical theory on fibred manifolds to a planimeter motion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066074" target="_blank" >RIV/00216224:14310/13:00066074 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2012.11.003" target="_blank" >http://dx.doi.org/10.1016/j.ijnonlinmec.2012.11.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2012.11.003" target="_blank" >10.1016/j.ijnonlinmec.2012.11.003</a>
Alternative languages
Result language
angličtina
Original language name
Nonholonomic mechanics: A practical application of the geometrical theory on fibred manifolds to a planimeter motion
Original language description
A geometrical theory of general nonholonomic mechanical systems on fibred manifolds and their jet prolongations, based on so-called Chetaev-type constraint forces, was developed in 1990s by Krupkova. The relevance of this theory for general types of nonholonomic constraints, not only linear or affine ones, was then verified on appropriate models. Frequently considered constraints on real physical systems are based on rolling without sliding, i.e. they are holonomic, or semiholonomic, i.e. integrable. Onthe other hand, there exist some practical examples of systems subjected to true (non-integrable) nonholonomic constraint conditions. In this paper we study the planimeter-a mechanism for measuring areas which belongs to mechanical systems subjected toconstraint conditions containing among others a true nonholonomic one. We study the planimeter motion using the above mentioned Krupkova's approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Non-Linear Mechanics
ISSN
0020-7462
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
April 2013
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
6
Pages from-to
19-24
UT code for WoS article
000315315300003
EID of the result in the Scopus database
—