All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nonholonomic mechanics: A practical application of the geometrical theory on fibred manifolds to a planimeter motion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066074" target="_blank" >RIV/00216224:14310/13:00066074 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2012.11.003" target="_blank" >http://dx.doi.org/10.1016/j.ijnonlinmec.2012.11.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2012.11.003" target="_blank" >10.1016/j.ijnonlinmec.2012.11.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nonholonomic mechanics: A practical application of the geometrical theory on fibred manifolds to a planimeter motion

  • Original language description

    A geometrical theory of general nonholonomic mechanical systems on fibred manifolds and their jet prolongations, based on so-called Chetaev-type constraint forces, was developed in 1990s by Krupkova. The relevance of this theory for general types of nonholonomic constraints, not only linear or affine ones, was then verified on appropriate models. Frequently considered constraints on real physical systems are based on rolling without sliding, i.e. they are holonomic, or semiholonomic, i.e. integrable. Onthe other hand, there exist some practical examples of systems subjected to true (non-integrable) nonholonomic constraint conditions. In this paper we study the planimeter-a mechanism for measuring areas which belongs to mechanical systems subjected toconstraint conditions containing among others a true nonholonomic one. We study the planimeter motion using the above mentioned Krupkova's approach.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BE - Theoretical physics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Non-Linear Mechanics

  • ISSN

    0020-7462

  • e-ISSN

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    April 2013

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    19-24

  • UT code for WoS article

    000315315300003

  • EID of the result in the Scopus database