Riccati technique and oscillation constant for modified Euler type half-linear equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114063" target="_blank" >RIV/00216224:14310/20:00114063 - isvavai.cz</a>
Result on the web
<a href="http://publi.math.unideb.hu/load_jpg.php?p=2392" target="_blank" >http://publi.math.unideb.hu/load_jpg.php?p=2392</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5486/PMD.2020.8739" target="_blank" >10.5486/PMD.2020.8739</a>
Alternative languages
Result language
angličtina
Original language name
Riccati technique and oscillation constant for modified Euler type half-linear equations
Original language description
We study half-linear differential equations with the scalar arbitrarily given p-Laplacian. It is known that these equations are conditionally oscillatory for some coefficients. The conditional oscillation for certain non-constant coefficients has been proved via the Prüfer angle. Using a new modification of the Riccati method (i.e., by a different approach), we identify easy-to-use conditions on the coefficients which assure the conditionally oscillatory behaviour as well. The obtained results cover equations whose oscillatory properties were not known and these results are new even for linear equations (i.e., for p = 2).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-03224S" target="_blank" >GA17-03224S: Asymptotic theory of ordinary and fractional differential equations and their numerical discretizations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Publicationes Mathematicae Debrecen
ISSN
0033-3883
e-ISSN
—
Volume of the periodical
97
Issue of the periodical within the volume
1-2
Country of publishing house
HU - HUNGARY
Number of pages
31
Pages from-to
117-147
UT code for WoS article
000552004500008
EID of the result in the Scopus database
2-s2.0-85094943669