All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Minimal accessible categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118962" target="_blank" >RIV/00216224:14310/21:00118962 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.tac.mta.ca/tac/volumes/36/10/36-10abs.html" target="_blank" >http://www.tac.mta.ca/tac/volumes/36/10/36-10abs.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Minimal accessible categories

  • Original language description

    We give a purely category-theoretic proof of the result of Makkai and Paré saying that the category Lin of linearly ordered sets and order preserving injective mappings is a minimal finitely accessible category. We also discuss the existence of a minimal ℵ_1-accessible category.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-00902S" target="_blank" >GA19-00902S: Injectivity and Monads in Algebra and Topology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theory and Applications of Categories

  • ISSN

    1201-561X

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    2021

  • Country of publishing house

    CA - CANADA

  • Number of pages

    8

  • Pages from-to

    280-287

  • UT code for WoS article

    000674965200011

  • EID of the result in the Scopus database

    2-s2.0-85130158163