All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An upper bound of a generalized upper Hamiltonian number of a graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122701" target="_blank" >RIV/00216224:14310/21:00122701 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5817/AM2021-5-299" target="_blank" >http://dx.doi.org/10.5817/AM2021-5-299</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5817/AM2021-5-299" target="_blank" >10.5817/AM2021-5-299</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An upper bound of a generalized upper Hamiltonian number of a graph

  • Original language description

    In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph H we define the H-Hamiltonian number of a graph G. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs G and H using H-Hamiltonian number of G. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper H-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph H only paths have maximal H-Hamiltonian number.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archivum Mathematicum

  • ISSN

    0044-8753

  • e-ISSN

    1212-5059

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    13

  • Pages from-to

    299-311

  • UT code for WoS article

    000707419700003

  • EID of the result in the Scopus database

    2-s2.0-85117903846