An upper bound of a generalized upper Hamiltonian number of a graph
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00122701" target="_blank" >RIV/00216224:14310/21:00122701 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5817/AM2021-5-299" target="_blank" >http://dx.doi.org/10.5817/AM2021-5-299</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2021-5-299" target="_blank" >10.5817/AM2021-5-299</a>
Alternative languages
Result language
angličtina
Original language name
An upper bound of a generalized upper Hamiltonian number of a graph
Original language description
In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph H we define the H-Hamiltonian number of a graph G. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs G and H using H-Hamiltonian number of G. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper H-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph H only paths have maximal H-Hamiltonian number.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
1212-5059
Volume of the periodical
57
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
13
Pages from-to
299-311
UT code for WoS article
000707419700003
EID of the result in the Scopus database
2-s2.0-85117903846