All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Single-shot spatial-resolved optical emission spectroscopy of argon and titanium species within the spoke

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119345" target="_blank" >RIV/00216224:14310/22:00119345 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/1361-6463/ac2cae/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6463/ac2cae/meta</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/ac2cae" target="_blank" >10.1088/1361-6463/ac2cae</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Single-shot spatial-resolved optical emission spectroscopy of argon and titanium species within the spoke

  • Original language description

    The rotating plasma patterns, also known as ionisation zones or spokes, observed, among other discharges, in high power impulse magnetron sputtering discharge (HiPIMS) require non-invasive diagnostics favourable for a precise characterisation of their properties. In this contribution, the single-shot spatial-resolved optical emission spectroscopy of the spoke was conducted in non-reactive HiPIMS discharge using a titanium target. Investigated working pressures cover the conditions with the presence of localised, well-defined spokes. A fast photodiode and a cylindrical Langmuir probe were utilised to capture and determine the passing spoke position. These signals were synchronised with the acquisition of the optical emission spectrum by the intensified charge-coupled device detector. A large amount of single-shot data enabled the statistical analysis of the spoke. The optical emissions of argon atoms and ions and titanium atoms and ions were investigated in the passing spoke. It was found that the intensities of the spectral lines of the Ar and Ti species have the characteristic evolution for all studied spectral lines of this specific species within the spoke. The intensity evolutions are independent of the applied pressure. The evolution of the excitation temperatures determined by the Boltzmann plot method using the Ar II and Ti I and Ti II spectral lines remains constant within the spoke in the margin of standard error for all investigated pressures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physics D: Applied Physics

  • ISSN

    0022-3727

  • e-ISSN

    1361-6463

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    035205

  • UT code for WoS article

    000709101500001

  • EID of the result in the Scopus database

    2-s2.0-85118728156