All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Compactifications of indefinite 3-Sasaki structures and their quaternionic Kähler quotients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139365" target="_blank" >RIV/00216224:14310/24:00139365 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10231-023-01385-0" target="_blank" >https://link.springer.com/article/10.1007/s10231-023-01385-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10231-023-01385-0" target="_blank" >10.1007/s10231-023-01385-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Compactifications of indefinite 3-Sasaki structures and their quaternionic Kähler quotients

  • Original language description

    We show that 3-Sasaki structures admit a natural description in terms of projective differential geometry. First we establish that a 3-Sasaki structure may be understood as a projective structure whose tractor connection admits a holonomy reduction, satisfying a particular non-vanishing condition, to the (possibly indefinite) unitary quaternionic group Sp(p, q). Moreover, we show that, if a holonomy reduction to Sp(p, q) of the tractor connection of a projective structure does not satisfy this condition, then it decomposes the underlying manifold into a disjoint union of strata including open manifolds with (indefinite) 3-Sasaki structures and a closed separating hypersurface at infinity with respect to the 3-Sasaki metrics. It is shown that the latter hypersurface inherits a Biquard–Fefferman conformal structure, which thus (locally) fibers over a quaternionic contact structure, and which in turn compactifies the natural quaternionic Kähler quotients of the 3-Sasaki structures on the open manifolds. As an application, we describe the projective compactification of (suitably) complete, non-compact (indefinite) 3-Sasaki manifolds and recover Biquard’s notion of asymptotically hyperbolic quaternionic Kähler metrics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-06357S" target="_blank" >GA19-06357S: Geometric structures, differential operators and symmetries</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annali di Matematica Pura ed Applicata

  • ISSN

    0373-3114

  • e-ISSN

    1618-1891

  • Volume of the periodical

    203

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    28

  • Pages from-to

    875-902

  • UT code for WoS article

    001091151700001

  • EID of the result in the Scopus database

    2-s2.0-85174815078