Note on singular Sturm comparison theorem and strict majorant condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139407" target="_blank" >RIV/00216224:14310/24:00139407 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022247X24003135" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X24003135</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2024.128391" target="_blank" >10.1016/j.jmaa.2024.128391</a>
Alternative languages
Result language
angličtina
Original language name
Note on singular Sturm comparison theorem and strict majorant condition
Original language description
In this note we present a singular Sturm comparison theorem for two linear Hamiltonian systems satisfying a standard majorant condition and the identical normality assumption. Both endpoints of the considered interval may be singular. We identify the exact form of the strict majorant condition, which is necessary and sufficient for the property that every solution (conjoined basis) of the majorant system has more focal points than the solutions of the minorant system. We provide a formula for the exact number of focal points of any solution of the majorant system, depending on the number of focal points of solutions of the minorant system and on the number of right focal points of a solution of a certain transformed linear Hamiltonian system. This transformed system may be in general abnormal. Our result extends the previous Sturm comparison theorems for linear Hamiltonian systems by Kratz (1995) [18] on a compact interval and by the authors (2020) [35], [36] on an open or unbounded interval. The main result is also new for the second order differential equations, where it extends the singular comparison theorem by Aharonov and Elias (2010) [1].
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA23-05242S" target="_blank" >GA23-05242S: Oscillation theory on hybrid time domains with applications in spectral theory and matrix analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
538
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
1-16
UT code for WoS article
001229936600001
EID of the result in the Scopus database
2-s2.0-85190308968