All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Note on singular Sturm comparison theorem and strict majorant condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139407" target="_blank" >RIV/00216224:14310/24:00139407 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022247X24003135" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022247X24003135</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2024.128391" target="_blank" >10.1016/j.jmaa.2024.128391</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Note on singular Sturm comparison theorem and strict majorant condition

  • Original language description

    In this note we present a singular Sturm comparison theorem for two linear Hamiltonian systems satisfying a standard majorant condition and the identical normality assumption. Both endpoints of the considered interval may be singular. We identify the exact form of the strict majorant condition, which is necessary and sufficient for the property that every solution (conjoined basis) of the majorant system has more focal points than the solutions of the minorant system. We provide a formula for the exact number of focal points of any solution of the majorant system, depending on the number of focal points of solutions of the minorant system and on the number of right focal points of a solution of a certain transformed linear Hamiltonian system. This transformed system may be in general abnormal. Our result extends the previous Sturm comparison theorems for linear Hamiltonian systems by Kratz (1995) [18] on a compact interval and by the authors (2020) [35], [36] on an open or unbounded interval. The main result is also new for the second order differential equations, where it extends the singular comparison theorem by Aharonov and Elias (2010) [1].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA23-05242S" target="_blank" >GA23-05242S: Oscillation theory on hybrid time domains with applications in spectral theory and matrix analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    538

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    1-16

  • UT code for WoS article

    001229936600001

  • EID of the result in the Scopus database

    2-s2.0-85190308968